开学活动
搜索
    上传资料 赚现金

    2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】

    2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】第1页
    2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】第2页
    2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】

    展开

    这是一份2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列二次根式,最简二次根式是( )
    A.B.C.D.
    2、(4分)下列各组线段 中,能构成直角三角形的是( )
    A.2,3,4 B.3,4,6 C.5,12,13 D.4,6,7
    3、(4分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
    A.2、40 B.42、38 C.40、42 D.42、40
    4、(4分)如果a < b ,则下列式子错误的是( )
    A.a +7< b +7B.a ﹣5< b ﹣5
    C.﹣3 a <﹣3 bD.
    5、(4分)下列由左边到右边的变形,属于因式分解的是( ).
    A.(x+1)(x-1)=x2-1
    B.x2-2x+1=x(x-2)+1
    C.a2-b2=(a+b)(a-b)
    D.mx+my+nx+ny=m(x+y)+n(x+y)
    6、(4分)八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示
    如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
    A.甲B.乙C.丙D.丁
    7、(4分)下列生态环保标志中,是中心对称图形的是
    A.B.
    C.D.
    8、(4分)若线段a,b,c组成直角三角形,则它们的比可以为( )
    A.2∶3∶4B.7∶24∶25C.5∶12∶14D.4∶6∶10
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.
    10、(4分)在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.
    11、(4分)一组数据10,9,10,12,9的中位数是__________.
    12、(4分)如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.
    13、(4分)若一次函数y=kx+b,当-3≤x≤1时,对应的y值满足1≤y≤9,则一次函数的解析式为____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:+1=.
    15、(8分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛.该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查.
    收集数据如下:
    七年级:
    八年级:
    整理数据如下:
    分析数据如下:
    根据以上信息,回答下列问题:
    (1)a=______,b=______;
    (2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
    (3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有_____人.
    16、(8分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图
    根据以上信息,整理分析数据如下:
    (1)写出表格中,,的值: , , .
    (2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
    (3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.
    17、(10分)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与x(时)的函数图象.
    (1)求每小时的进水量;
    (2)当8≤x≤12时,求y与x之间的函数关系式;
    (3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.
    18、(10分)某校分别于2015年、2016年春季随机调查相同数量的学生,对学生做家务的情况进行调查(开展情况分为“基本不做”、“有时做”、“常常做”、“每天做”四种),绘制成部分统计图如下.
    请根据图中信息,解答下列问题:
    (1)a=______%,b=______%,“每天做”对应阴影的圆心角为______°;
    (2)请你补全条形统计图;
    (3)若该校2016年共有1200名学生,请你估计其中“每天做”家务的学生有多少名?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)不等式3x+1<-2的解集是________.
    20、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
    21、(4分)函数自变量的取值范围是_________.
    22、(4分)如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.
    23、(4分)两个实数,,规定,则不等式的解集为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算:(1);(2)+(3﹣2)(3+2)
    25、(10分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值
    26、(12分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF ,求证:四边形AECF是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A、被开方数含开的尽的因数,故A不符合题意;
    B、被开方数含分母,故B不符合题意;
    C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;
    D、被开方数含能开得尽方的因数或因式,故D不符合题意.
    故选C.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    2、C
    【解析】试题分析:选项A,22+32=13≠42;选项B,32+42=25≠62;选项C,52+122=169=132;选项D,42+62=52≠1.由勾股定理的逆定理可得,只有选项C能够成直角三角形,故答案选C.
    考点:勾股定理的逆定理.
    3、D
    【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
    【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
    将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
    故选D.
    【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
    4、C
    【解析】
    根据不等式的性质,逐项判断即可.
    【详解】
    解:∵a<b,∴a+7<b+7,故选项A不符合题意;
    ∵a<b,∴a-5<b-5,故选项B不符合题意;
    ∵a<b,∴-3a>-3b,故选项C符合题意;
    ∵a<b,∴,故选项D不符合题意.
    故选:C.
    此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
    5、C
    【解析】
    因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
    【详解】
    解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
    故选择C.
    本题考查了因式分解的定义,牢记定义是解题关键.
    6、B
    【解析】
    根据平均数和方差的意义解答.
    【详解】
    解:从平均数看,成绩最好的是乙、丙同学,
    从方差看,乙方差小,发挥最稳定,
    所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,
    故选:B.
    本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    7、B
    【解析】
    根据中心对称图形的概念解答即可.
    【详解】
    A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
    故选B.
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    8、B
    【解析】
    要组成直角三角形,三条线段的比值要满足较小的比值的平方和等于较大比值的平方.结合选项分析即可得到答案.
    【详解】
    A. 22+32≠42,故本选项错误;
    B. 72+242=252,故本选项正确;
    C. 52+122≠142,故本选项错误;
    D. 4262≠102,故本选项错误.
    故选B.
    本题考查勾股定理的逆定理,解题的关键是掌握勾股定理的逆定理.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、假设在直角三角形中,两个锐角都大于45°.
    【解析】
    反证法的第一步是假设命题的结论不成立,据此可以得出答案.
    【详解】
    ∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.
    此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤. 反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.
    10、4
    【解析】
    根据对角线互相垂直的四边形的面积等于对角线乘积的一半.
    【详解】
    解:如图,∵AC平分∠BAD,
    ∴∠BAE=∠DAE,
    在△BAE和△DAE中
    ∴△BAE≌△DAE,
    ∴∠BEA=∠DEA,
    ∵∠BEA+∠DEA=180º,
    ∴∠BEA=∠DEA=90º,
    ∴DB⊥AC,
    ∴S四边形ABCD=AC×BD,
    ∵AC=8,S四边形ABCD=16,
    ∴BD=4.
    故答案为:4.
    本题考查了对角线互相垂直的四边形的面积.
    11、1
    【解析】
    根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.
    【详解】
    将数据按从小到大排列为:9,9,1,1 12,处于中间位置也就是第3位的是1,因此中位数是1,
    故答案为:1.
    此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.
    12、×()1.
    【解析】
    已知正方形A1B1C1D1的边长为,然后得到正方形A2B2C2D2的边长为
    ,然后得到规律,即可求解.
    【详解】
    解:∵正方形A1B1C1D1的边长为,
    正方形A2B2C2D2的边长为
    正方形A3B3C3D3的边长为,
    …,
    正方形A2018B2018C2018D2018的边长为.
    故答案为.
    本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.
    13、y=2x+7或y=-2x+1
    【解析】
    解:分两种情况讨论:
    (1)当k>0时, ,解得:,此时y=2x+7;
    (2)当k<0时, ,解得:,此时y=-2x+1.
    综上所述:所求的函数解析式为:y=2x+7或y=-2x+1.
    点睛:本题主要考查待定系数法求一次函数的解析式的知识,解答本题的关键是熟练掌握一次函数的性质:在定义域上是单调函数,本题难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、x=0
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    解:去分母得:1+x﹣2=﹣x﹣1,
    解得:x=0,
    经检验x=0是分式方程的解.
    此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    15、 (1)8,88.1; (2)你认为 八 年级知识竞赛的总体成绩较好,理由1:理由2:见解析;或者你认为 七 年级知识竞赛的总体成绩较好,理由1: 理由2: 见解析; (答案不唯一,合理即可);(3)460.
    【解析】
    (1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,
    (2)从中位数、众数、方差进行分析,调查结论,
    (3)用各个年级的总人数乘以样本中优秀人数所占的比即可.
    【详解】
    (1) a=20-1-10-1=8,b=(88+89)÷2=88.1
    故答案为:8,88.1.
    (2)你认为 八 年级知识竞赛的总体成绩较好
    理由1:八年级成绩的中位数较高;
    理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定.
    或者
    你认为 七 年级知识竞赛的总体成绩较好,
    理由1:七年级的平均成绩较高;
    理由2:低分段人数较少。 (答案不唯一,合理即可)
    (3) 七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,
    180+280=460人.
    考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.
    16、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.
    【解析】
    (1)根据平均数、中位数、众数的计算方法,通过计算得出答案,
    (2)从平均数和中位数两个方面进行比较、分析得出结论,
    (3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.
    【详解】
    (1)中学组的平均数分;
    小学组的成绩:70、75、80、100、100因此中位数为:80;
    中学组出现次数最多的分数是1分,所有众数为1分;
    故答案为:1,80,1.
    (2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,
    因此从平均数和中位数进行分析,中学组的决赛成绩较好;
    答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.
    (3)

    中学组的比较稳定.
    答:中学组代表队选手成绩较稳定.
    考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.
    17、(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y=3x+1;(3).
    【解析】
    (1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;
    (2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;
    (3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻
    【详解】
    解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米
    ∴(25﹣5)÷(8﹣4)=5(立方米/时)
    ∴每小时的进水量为5立方米.
    (2)设函数y=kx+b经过点(8,25),(12,37)
    解得:∴当8≤x≤12时,y=3x+1
    (3)∵8点到12点既进水又出水时,每小时水量上升3立方米
    ∴每小时出水量为:5﹣3=2(立方米)
    当8≤x≤12时,3x+1≥28,解得:x≥9
    当x>14时,37﹣2(x﹣14)≥28,解得:x≤
    ∴当水塔中的贮水量不小于28立方米时,x的取值范围是9≤x≤
    本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.
    18、(1)19,20,144;(2)见解析;(3)480
    【解析】
    (1)根据统计图可以求得而2016年抽调的学生数,从而可以求得a、b的值以及“每天做”对应的圆心角的度数;
    (2)根据统计图可以求得“有时做”、“常常做”的人数,从而可以将条形统计图补充完整;
    (3)根据统计图可以估计“每天做”家务的学生的人数.
    【详解】
    解:(1)由题意可得,
    2016年抽调的学生数为:80÷40%=200,
    则a=38÷200×100%=19%,
    ∴b=1-19%-21%-40%=20%,
    “每天做”对应的圆心角为:360°×40%=144°,
    故答案为:19,20,144;
    (2)“有时做”的人数为:20%×200=40,
    “常常做”的人数为:200×21%=42,
    补全的条形统计图如下图所示,
    (3)由题意可得,
    “每天做”家务的学生有:1200×40%=480(人),
    即该校每天做家务的学生有480人.
    本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.
    考点:一元一次不等式的解法.
    20、1
    【解析】
    解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
    所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
    故答案为:1.
    本题考查三角形的中位线定理.
    21、
    【解析】
    根据分式有意义的条件求自变量的取值范围即可.
    【详解】
    解:由题意可知:x+2018≠0
    解得x≠-2018
    故答案为:.
    本题考查求自变量的取值范围,掌握分式成立的条件分母不能为零是本题的解题关键.
    22、72
    【解析】
    试题解析:观察图形可知,中心角是由五个相同的角组成,
    ∴旋转角度是
    ∴这四次旋转中,旋转角度最小是
    故答案为72.
    23、
    【解析】
    根据题意列出方程,再根据一元一次不等式进行解答即可.
    【详解】
    由规定,可得.
    所以,,就是,解得,.
    故答案为:
    此题考查解一元一次不等式,解题关键在于理解题意.
    二、解答题(本大题共3个小题,共30分)
    24、(1)﹣;(2)1.
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用二次根式的性质和平方差公式计算.
    【详解】
    解:(1)原式=1﹣9+
    =﹣;
    (2)原式=7+9﹣12
    =1.
    本题考查了二次根式的运算,正确掌握二次根式的性质是解题的关键.
    25、3.
    【解析】
    先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.
    【详解】
    解:原式===.
    其中,即x≠﹣1、0、1.
    又∵﹣2<x≤2且x为整数,∴x=2.
    将x=2代入中得:==3.
    考点:分式的化简求值.
    26、答案见解析
    【解析】
    分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.
    详解:∵O是AC的中点,且EF⊥AC,
    ∴AF=CF,AE=CE,OA=OC,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠AFO=∠CEO,
    在△AOF和△COE中,

    ∴△AOF≌△COE(AAS),
    ∴AF=CE,
    ∴AF=CF=CE=AE,
    ∴四边形AECF是菱形;
    点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.
    题号





    总分
    得分




    平均数
    85
    93
    93
    86
    方差
    3
    3
    3.5
    3.7
    平均数(分
    中位数(分
    众数(分
    小学组
    85
    100
    中学组
    85

    相关试卷

    2024-2025学年四川省成都市温江区数学九年级第一学期开学达标检测试题【含答案】:

    这是一份2024-2025学年四川省成都市温江区数学九年级第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省临沂数学九年级第一学期开学达标检测试题【含答案】:

    这是一份2024-2025学年山东省临沂数学九年级第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map