2024-2025学年天津市北仓第二中学九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,是真命题的是( )
A.对角线互相垂直的四边形是菱形B.对角形相等的四边形是矩形
C.顺次连结平行四边形各边中点所得四边形是平行四边形D.一组邻边相等的平行四边形是正方形
2、(4分)如图,在△ABC中,AB=AC,AD是中线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论中:①AB上任一点与AC上任一点到D的距离相等;②AD上任一点到AB,AC的距离相等;③∠BDE=∠CDF;④∠1=∠2;其中正确的有( )
A.1个B.2个C.3个D.4个
3、(4分)实数的值在( )
A.0与1之间B.1与2之间C.2与3之间D.3与4之间
4、(4分)直线与轴的交点坐标是( )
A.B.C.D.
5、(4分)童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图中能反映y与x的函数关系式的大致图象是( )
A.B.C.D.
6、(4分)在实数范围内,有意义,则x的取值范围是( )
A.x≥0B.x≤0C.x>0D.x<0
7、(4分)某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是( )
A.总体 B.总体中的一个样本 C.样本容量 D.个体
8、(4分)下列二次根式中,最简二次根式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一个直角三角形的两边长分别为8和6,则它的面积为_____.
10、(4分) 若A(x1,y1)和B(x2,y2)在反比例函数的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2;
11、(4分)自2019年5月30日万州牌楼长江大桥正式通车以来,大放光彩,引万人驻足.市民们纷纷前往打卡、拍照留念,因此牌楼长江大桥成为了万州网红打卡地.周末,小棋和小艺两位同学相约前往参观,小棋骑自行车,小艺步行,她们同时从学校出发,沿同一条路线前往,出发一段时间后小棋发现东西忘了,于是立即以原速返回到学校取,取到东西后又立即以原速追赶小艺并继续前往,到达目的地后等待小艺一起参观(取东西的时间忽略不计),在整个过程两人保持匀速,如图是两人之间的距离与出发时间之间的函数图象如图所示,则当小棋到达目的地时,小艺离目的地还有______米.
12、(4分)写一个图象经过点(﹣1,2)且y随x的增大而减小的一次函数解析式_____.
13、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在等腰三角形ABD 中, ABAD.
(I)试利用无刻度的直尺和圆规作图,求作:点C ,使得四边形 ABCD 是菱形.(保留作图痕迹,不写作法和证明);
(II)在菱形 ABCD 中,连结 AC 交 BD 于点O,若 AC8,BD6,求AB边上的高h的长.
15、(8分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
16、(8分)某幼儿园打算在六一儿童节给小朋友买礼物,计划用元购买一定数量的棒棒糖,商店推出优惠,购买达到一定数量之后,购买总金额打八折,此时,王老师发现,花元可以买到计划数量的倍还多个,棒棒糖的原单价是多少?
17、(10分)如图,在□ABCD 中,E、F为对角线AC上的两点,且AE=CF.
(1)求证:四边形DEBF是平行四边形;
(2)如果DE=3,EF=4,DF=5,求EB、DF两平行线之间的距离.
18、(10分)如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?
(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝2
20、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.
21、(4分)已知函数,当时,函数值的取值范围是_____________
22、(4分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.
23、(4分)若函数y=(m+1)x+(m2-1) (m为常数)是正比例函数,则m的值是____________。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,有一块边长为40米的正方形绿地ABCD,在绿地的边BC上的E处装有健身器材,BE=9米.有人为了走近路,从A处直接踏过绿地到达E处,小明想在A处树立一个标牌“少走■米,踏之何忍”.请你计算后帮小明在标牌的■处填上适当的数.
25、(10分)在生活与工作都离不开手机和电脑的今天,青少年近视、散光等眼问题日趋严重,为宣传2018全国爱眼日(6月6日),增强大众近视防控意识,某青少年视力矫正中心举办了主题为“永康降度还您一双明亮的眼睛”的降度明星大赛,现根据大赛公布的结果,将所有参赛孩子双眼降度之和(含近视和散光)情况绘制成了如下的统计表:
(1)求参加降度明星大赛的孩子共有多少人?
(2)求出所有参赛孩子所降度数的众数、中位数和平均数.
26、(12分)(1)计算:
(2)解方程: (2 x 1)( x 3) 4
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据菱形、矩形、平行四边形、正方形的判定定理逐项判断即可.
【详解】
解:A. 对角线互相垂直的平行四边形是菱形,此选项不符合题意;
B. 对角形相等的平行四边形是矩形,此选项不符合题意;
C. 顺次连结平行四边形各边中点所得四边形是平行四边形 ,此选项符合题意;
D. 一组邻边相等的矩形是正方形,此选项不符合题意;
故选:C.
本题考查的知识点是菱形、矩形、平行四边形、正方形的判定定理,熟记菱形、矩形、平行四边形、正方形的判定定理内容是解此题的关键.
2、C
【解析】
试题分析:根据等腰三角形的三线合一定理可得:∠1=∠2,∠BDE=∠CDF,根据角平分线的性质可知:AD上任一点到AB、AC的距离相等,故正确的有3个,选C.
3、B
【解析】
直接利用二次根式的估算,的值在1和,即可得出结果.
【详解】
解:∵1<<,
∴实数的值在1与2之间.
故选:B.
此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.
4、A
【解析】
根据直线与x轴的交点,y=0时,求得的x的值,就是直线与x轴相交的横坐标,计算求解即可.
【详解】
解:当y=0时,可得
计算
所以直线与x轴的交点为:
故选A.
本题主要考查直线与坐标轴的相交问题,这是一次函数的常考点,与x轴相交,y=0,与y轴相交,则x=0.
5、A
【解析】
根据步行速度慢,路程变化慢,等车时路程不变化,乘公交车时路程变化快,看比赛时路程不变化,回家时乘车路程变化快,可得答案.
【详解】
步行先变化慢,等车路程不变化,乘公交车路程变化快,看比赛路程不变化,回家路程变化快.
故选A.
本题考查了函数图象,根据童童的活动得出函数图形是解题关键,注意选项B中步行的速度快不符合题意.
6、A
【解析】
由题意得,x≥0 .
故选A.
7、B
【解析】试题解析:首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.4株葡萄的产量是样本.
故选B.
8、C
【解析】
根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.
【详解】
解:A、,则不是最简二次根式,本选项错误;
B、=2,则不是最简二次根式,本选项错误;
C、是最简二次根式,本选项正确;
D、,则不是最简二次根式,本选项错误.
本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、24或
【解析】
根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解,再求三角形面积.
【详解】
解:(1)若8是直角边,则第三边x是斜边,
由勾股定理得,62+82=x2
解得:x=10,
则它的面积为:×6×8=24;
(2)若8是斜边,则第三边x为直角边,
由勾股定理得,62+x2=82,
解得x=2,
则它的面积为:×6×2=6.
故答案为:24或6.
本题考查了勾股定理解直角三角形以及直角三角形面积求法,当已知条件中没有明确哪是斜边时,要注意分类讨论.
10、>;
【解析】
试题解析:∵反比例函数中,系数
∴反比例函数在每个象限内,随的增大而减小,
∴当时,
故答案为
11、400
【解析】
设小祺的速度为x米/分钟,小艺的速度为y米/分钟,由题意列方程组,可求出小祺的速度与小艺的速度.
【详解】
设小祺的速度为x米/分钟,小艺的速度为y米/分钟
则有:
∴
∴设小祺的速度为130米/分钟,小艺的速度为70米/分钟
∴当小祺到达目的地时,小艺离目的地的距离=米
故答案为:400米
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解,再找出对应数量关系.
12、y=﹣x+1(答案不唯一).
【解析】
根据一次函数的性质,y随x的增大而减小时k值小于0,令k=−1,然后求解即可.
【详解】
解:∵y随x的增大而减小,
∴k<0,
不妨设为y=﹣x+b,
把(﹣1,1)代入得,1+b=1,
解得b=1,
∴函数解析式为y=﹣x+1.
故答案为:y=﹣x+1(答案不唯一).
本题考查了一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
13、70°
【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
【详解】
根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
∵∠A=70°,
∴∠C=70°.
故答案为:70°.
此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
三、解答题(本大题共5个小题,共48分)
14、 (I)见解析;(II)
【解析】
(I)根据菱形的尺规作图的方法作图即可.
(II)先由勾股定理可得出AB的长度,然后根据菱形的面积:即可求出h的长度.
【详解】
(I)如图,点是所求作的点,
∴四边形是菱形.
(II) 如图:连接AC,交BD于点O.
∵四边形是菱形,
∴,,
,
在中,由勾股定理得:,
∵,
∴,解得:.
本题考查了菱形的尺规作图和菱形的性质,难点在于根据等面积法求出h的值.
15、原式=﹣3x1+4,当x=时,原式=﹣1.
【解析】
试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.
试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,
当x=时,原式=﹣6+4=﹣1.
考点:整式的化简求值.
16、棒棒糖的原单价为3元.
【解析】
【分析】设棒棒糖的原单价是x元,由等量关系“优惠后,花480元可以买到计划数量的2倍还多20个”,列出方程,解方程进行检验后即可得答案.
【详解】设棒棒糖的原单价为x元,
根据题意,得: ×2+20= ,
解得:x=3 ,
经检验:x=3是原方程的根,
答:棒棒糖的原单价为3元.
【点睛】本题考查了分式方程的应用,弄清题意,找出等量关系列出方程是解题的关键.
17、(1)详见解析;(2)2.1.
【解析】
(1)根据平行四边形的性质可得AD=BC,AD∥BC,继而可得∠DAE=∠BCF,然后即可利用SAS证明△ADF≌△CBE,进一步即可证明DF=EB,DF∥EB,即可证得结论;
(2)先根据勾股定理的逆定理得出DE⊥EF,然后根据三角形的面积即可求出结果.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∴∠DAE=∠BCF,
∵AE=CF,∴AF=CE,
∴△ADF≌△CBE(SAS),
∴DF=EB,∠DFA=∠BEC,
∴DF∥EB,
∴四边形DEBF是平行四边形;
(2)解:∵,,
∴,∴DE⊥EF.
过点E作EG⊥DF于G,如图,则,即3×1=EG×5,∴EG=2.1.
∴EB、DF两平行线之间的距离为2.1.
本题考查了平行四边形的性质和判定、全等三角形的判定和性质、两平行线之间的距离的定义、勾股定理的逆定理和三角形的面积等知识,属于常见题型,熟练掌握平行四边形的判定和性质是解题的关键.
18、(1)1秒或2秒,(2)存在,秒或秒
【解析】
试题分析:(1)设经过秒后,根据的面积等于矩形面积的,得出方程解方程即可;(2)假设经过秒时,以为顶点的三角形与相似,分两种情况讨论,然后利用相似三角形的对应边成比例得出方程,解方程即可.
试题解析:(1)设经过秒后,的面积等于矩形面积的,
则有:,即,
解方程,得.
经检验,可知符合题意,所以经过1秒或2秒后,的面积等于矩形面积的.
(2)假设经过秒时,以为顶点的三角形与相似,
由矩形,可得,
因此有或
即①,或②.
解①,得;解②,得
经检验,或都符合题意,所以动点同时出发后,经过秒或秒时,以为顶点的三角形与相似
考点:1.矩形的性质2.相似三角形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、14
【解析】
根据菱形的面积等于两对角线乘积的一半求得其面积即可.
【详解】
由已知得,菱形的面积等于两对角线乘积的一半
即:6×8÷1=14cm1.
故答案为:14.
此题主要考查菱形的面积等于两条对角线的积的一半.
20、
【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:根据勾股定理,AB=,
BC=,
AC=,
∵AC2+BC2=AB2=26,
∴△ABC是直角三角形,
∵点D为AB的中点,
∴CD=AB=×=.
故答案为.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
21、
【解析】
依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.
【详解】
∵函数y=−3x+7中,k=−3<0,
∴y随着x的增大而减小,
当x=2时,y=−3×2+7=1,
∴当x>2时,y<1,
故答案为:y<1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、30°或150°.
【解析】
分等边△ADE在正方形的内部和外部两种情况分别求解即可得.
【详解】
如图1,
∵四边形ABCD为正方形,△ADE为等边三角形,
∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,
∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,
∴∠AEB=∠CED=15°,
则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;
如图2,
∵△ADE是等边三角形,
∴AD=DE,
∵四边形ABCD是正方形,
∴AD=DC,
∴DE=DC,
∴∠CED=∠ECD,
∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,
∴∠CED=∠ECD=×(180°﹣30°)=75°,
∴∠BEC=360°﹣75°×2﹣60°=150°,
故答案为30°或150°.
本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.
23、2
【解析】
根据正比例函数的定义列出方程m2-2=2且m+2≠2,依此求得m值即可.
【详解】
解:依题意得:m2-2=2且m+2≠2.
解得m=2,
故答案是:2.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2,自变量次数为2.
二、解答题(本大题共3个小题,共30分)
24、8.
【解析】
在 Rt △ABE 中,由勾股定理得(5分)
而AB+BE=40+9=49(1分)
因为49-41=8 所以标牌上填的数是8.
25、(1)60人;(2)众数为300、中位数为250、平均数为1.
【解析】
(1)将统计表中各项人数相加求和即参加降度明星大赛的孩子人数;
(2)出现次数最多的数为众数,将数据从小到大排序后,第30和第31个孩子的降度平均数为中位数;利用加权平均数的计算公式求平均数即可.
【详解】
解:(1)
答:参加降度明星大赛的孩子共有60人.
(2)由表可知:众数:300(度)
中位数:(度)
平均数:(度)
∴众数为300、中位数为250、平均数为1.
本题考查众数,中位数,加权平均数的求解,掌握概念正确理解计算是解题关键.
26、(1);(2),.
【解析】
(1)先化成最简二次根式,再合并其中的同类二次根式即可;
(2)先化成一元二次方程的一般形式,再用公式法求解.
【详解】
解:(1)
=
=
=.
(2)原方程可变形为:
由一元二次方程的求根公式,得:,
∴,.
∴原方程的解为:,.
本题考查了二次根式的混合运算和一元二次方程的解法,解题的关键是熟知二次根式的混合运算法则和一元二次方程的求解方法.
题号
一
二
三
四
五
总分
得分
批阅人
所降度数(度)
100
200
300
400
500
600
人数(人)
12
18
24
4
1
1
2024-2025学年天津市蓟州区上仓镇初级中学数学九年级第一学期开学统考试题【含答案】: 这是一份2024-2025学年天津市蓟州区上仓镇初级中学数学九年级第一学期开学统考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南长沙北雅中学数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2024-2025学年湖南长沙北雅中学数学九年级第一学期开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。