2024-2025学年云南省昭通市名校九上数学开学预测试题【含答案】
展开
这是一份2024-2025学年云南省昭通市名校九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个正比例函数的图象经过(1,﹣3),则它的表达式为( )
A.y=﹣3xB.y=3xC.y=D.y=﹣
2、(4分)如图,四边形ABCD为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为( )
A.β= 180-αB.β=180°-C.β=90°-αD.β=90°-
3、(4分)下列运算正确的是( )
A.B.C.D.
4、(4分)下列多项式中,可以提取公因式的是( )
A.ab+cdB.mn+m2
C.x2-y2D.x2+2xy+y2
5、(4分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是( )
A.矩形B.菱形C.正方形D.无法判断
6、(4分)如图,▱ OABC 的顶点 O、A、C 的坐标分别是(0,0),(2,0),(0.5,1),则点 B 的坐 标是( )
A.(1,2)B.(0.5,2)C.(2.5,1)D.(2,0.5)
7、(4分)下列命题的逆命题正确的是( )
A.如果两个角都是45°,那么它们相等B.全等三角形的周长相等
C.同位角相等,两直线平行D.若a=b,则
8、(4分)计算(2+)(﹣2)的结果是( )
A.1B.0C.﹣1D.﹣7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:________.
10、(4分)如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;
11、(4分)将直线向上平移2个单位得到直线_____________.
12、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
13、(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.
(1)求出点的坐标
(2)当时,直接写出x的取值范围.
(3)点在x轴上,当△的周长最短时,求此时点D的坐标
(4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
15、(8分)化简或求值
(1)(1+)÷
(2)1﹣÷,其中a=﹣,b=1.
16、(8分)计算:()﹣().
17、(10分)解一元二次方程:
(1)6x2﹣x﹣2=0
(2)(x+3)(x﹣3)=3
18、(10分)列方程(组)及不等式(组)解应用题:
水是生命之源.为了鼓励市民节约用水,江夏区水务部门实行居民用水阶梯式计量水价政策;若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,但每立方米污水处理费不变.
下面表格是某居民小区4月份甲、乙两户居民生活用水量及缴纳生活用水水费的情况统计:
4月份居民用水情况统计表
(注:污水处理的立方数=实际生活用水的立方数)
(1)求每立方米的基本水价和每立方米的污水处理费各是多少?
(2)设这个小区某居民用户5月份用水立方米,需要缴纳的生活用水水费为元.若他5月份生活用水水费计划不超过64元,该用户5月份最多可用水多少立方米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
20、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
21、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________
22、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).
23、(4分)如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:
(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);
(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.
25、(10分)把一个足球垂直水平地面向上踢,时间为(秒)时该足球距离地面的高度(米)适用公式
经过多少秒后足球回到地面?
经过多少秒时足球距离地面的高度为米?
26、(12分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.
(1)图中m=_____,n=_____;(直接写出结果)
(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.
【详解】
设正比例函数解析式为y=kx(k≠0).则根据题意,得
﹣3=k,解得k=﹣3
∴正比例函数的解析式为:y=﹣3x
故选A.
本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
2、D
【解析】
如图,根据题意得∠DAC=∠α,∠EAO=∠α,∠AEO=∠β,∠EOA=90°,再根据三角形内角和定理可得β=90°-.
【详解】
如图,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAC=∠α
由作图痕迹可得AE平分∠DAC,EO⊥AC
∴∠EAO=∠α, ∠EOA=90°
又∠AEO=∠β,
∠EAO+∠AOE+∠AEO=180°,
∴∠α+∠β+90°=180°,
∴β=90°-
故选D.
本题考查了矩形的性质,角平分线以及线段垂直平分线的性质,熟练掌握和运用相关的知识是解题的关键.
3、D
【解析】
根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
【详解】
A. 不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C. ,故C错误;
D. 故D正确.
故选D.
本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
4、B
【解析】
直接利用提取公因式法分解因式的步骤分析得出答案.
【详解】
解:A.ab+cd,没有公因式,故此选项错误;
B.mn+m2=m(n+m),故此选项正确;
C.x2﹣y2,没有公因式,故此选项错误;
D.x2+2xy+y2,没有公因式,故此选项错误.
故选B.
本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
5、B
【解析】
作DF⊥BC,BE⊥CD,先证四边形ABCD是平行四边形.再证Rt△BEC≌Rt△DFC,得,BC=DC,所以,四边形ABCD是菱形.
【详解】
如图,作DF⊥BC,BE⊥CD,
由已知可得,AD∥BC,AB∥CD
∴四边形ABCD是平行四边形.
在Rt△BEC和Rt△DFC中
∴Rt△BEC≌Rt△DFC,
∴BC=DC
∴四边形ABCD是菱形.
故选B
本题考核知识点:菱形的判定.解题关键点:通过全等三角形证一组邻边相等.
6、C
【解析】
延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.
【详解】
延长BC交y轴于点D,如图所示:
∵点A的坐标为(2,0),
∴OA=2,
∵四边形OABC是平行四边形,
∴BC=OA=2,
∵点C的坐标是(0.5,1),
∴OD=1,CD=0.5,
∴BD=BC+CD=2.5,
∴点B的坐标是(2.5,1);
故选:C.
此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.
7、C
【解析】
交换原命题的题设与结论得到四个命题的逆命题,然后分别根据三角形的概念、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.
【详解】
A. 逆命题为:如果两个角相等,那么它们都是45°,此逆命题为假命题;
B. 逆命题为:周长相等的两三角形全等,此逆命题为假命题;
C. 逆命题为:两直线平行,同位角相等,此逆命题为真命题;
D. 逆命题为:若a2=b2,则a=b,此逆命题为假命题.
故选C.
本题考查命题与定理,解题的关键是掌握三角形的概念、全等三角形的判定、平行线的性质和平方根的定义.
8、C
【解析】
分析:
根据二次根式的乘法法则结合平方差公式进行计算即可.
详解:
原式=.
故选C.
点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
首先提取公因式3ab,再运用完全平方公式继续进行因式分解.
【详解】
解:=
本题考查了提公因式法,公式法分解因式,有公因式的首先提取公因式.掌握完全平方公式的特点:两个平方项,中间一项是两个底数的积的2倍,难点在于要进行二次因式分解.
10、4
【解析】
由正方形的对称性和矩形的性质可得结果.
【详解】
连接DE交FG于点O,由正方形的对称性及矩形的性质可得:
∠ABE=∠ADF=∠OEF=∠OFE=15°, ∴∠EOH=30°, ∴BE=DE=2OE=4EH, ∴=4.
故答案为4.
本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.
11、
【解析】
利用平移时k的值不变,只有b值发生变化,由上加下减得出即可.
【详解】
解:直线y=x-1向上平移2个单位,
得到直线的解析式为y=x-1+2=x+1.
故答案为:
本题考查了一次函数图象与几何变换,熟记直线解析式平移的规律:“上加下减,左加右减”是解题的关键.
12、60
【解析】
试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.
考点:线段垂直平分线的性质
13、1
【解析】
如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.
【详解】
解:如图,作PH⊥OB于H.
∵∠POA=∠POB,PH⊥OB,PD⊥OA,
∴PH=PD=3cm,
∵PC∥OA,
∴∠POA=∠CPO=15°,
∴∠PCH=∠COP+∠CPO=30°,
∵∠PHC=90°,
∴PC=2PH=1cm.
故答案为1.
本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、(1)(6,3);(2);(3)(0,0);(4)(6,9)或(6,-3)或(-6,3).
【解析】
(1)直接联立两直线解析式,即可得到点A的坐标;
(2)直接在图象上找到时,x的取值范围;
(3)过点A作交点为E即可得出点D与点O重合的时候,△的周长最短,即可得出点D的坐标;
(4)分三种情况考虑:当四边形OAQ1C为平行四边形时;当四边形OQ2AC为平行四边形时;当四边形OACQ3为平行四边形时,分别求出点Q的坐标即可.
【详解】
(1)联立两直线解析式可得
解得:
点A的坐标为(6,3)
(2)由点A(6,3)及图象知,当时,
(3)
过点A作交点为E,由图可知点B关于直线AE的对称点为点O
当点D与点O重合的时候,△的周长最短
即为CO+BC=6+6
此时点D的坐标为(0,0)
(4)存在点,使以为顶点的四边形是平行四边形
如图所示,分三种情况考虑:
当四边形OAQ1C为平行四边形时,
点Q1的横坐标为6,纵坐标为点C的纵坐标+3=9
Q1的坐标为(6,9)
当四边形OQ2AC为平行四边形时,
点Q2的横坐标为6,纵坐标为点A的纵坐标-6=-3
Q2的坐标为(6,-3)
当四边形OACQ3为平行四边形时,
点Q3关于OC的对称点为点A
Q3的坐标为(-6,3)
综上点Q的坐标为:(6,9)或(6,-3)或-6,3).
本题考查了一次函数的性质,平行四边形的性质,轴对称的性质,解题的重点是要熟练掌握各自的性质.
15、(1)、;(2)、2.
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将a与b的值代入计算即可求出值.
【详解】
解:(1)原式==
(2)原式=1﹣•=1-=
当a=﹣,b=1时,原式=2.
考点:分式的化简求值;分式的混合运算
16、
【解析】
分析:根据二次根式的运算法则即可求出答案.
详解:原式=
=
点睛:本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
17、 (1)x1=,x2=﹣;(2)x1=2,x2=﹣2.
【解析】
(1)直接利用公式法求解即可;
(2)方程整理后,利用直接开平方法求解即可.
【详解】
解:(1)a=6,b=﹣1,c=﹣2,
∵△=1+48=49,
∴x=,
解得:x1=,x2=﹣;
(2)
方程整理得:x2=12,
开方得:x=±2,
解得:x1=2,x2=﹣2.
本题主要考查解一元二次方程,掌握解一元二次方程的方法,并能根据题目灵活选用合适的方法是解题的关键.
18、(1)每立方米的基本水价为2.45元;每立方米的污水处理费是1元;(2)该用户5月份最多可用水15立方米.
【解析】
(1)设每立方米的基本水价为元;每立方米的污水处理费是元.根据题意列出方程组即可解答
(2)由(1)可列出不等式,即可解答
【详解】
(1)设每立方米的基本水价为元;每立方米的污水处理费是元.
依题意:
解之得:
答:每立方米的基本水价为2.45元;每立方米的污水处理费是1元.
(2)根据题意得:
∵ ∴
根据题意得:
∴
解得:
答:设该用户5月份最多可用水15立方米.
此题考查二元一次方程组的应用,一元一次不等式的应用,解题关键在于列出方程
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=x-4
【解析】
首先设一次函数解析式为y=kx+b,根据y随x的增大而增大可选取k=1(k取任意一个正数即可),再把点(3,﹣1)代入可得﹣1=3+b,计算出b的值,进而可得解析式.
【详解】
∵函数的值随自变量的增大而增大,
∴该一次函数的解析式为y=kx+b(k>0),
∴可选取k=1,
再把点(3,﹣1)代入:﹣1=3+b,
解得:b=-4,
∴一次函数解析式为y=x-4,
故答案为:y=x-4(答案不唯一).
本题考查一次函数的性质,掌握一次函数图象与系数的关系是解题的关键.
20、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
21、0.3
【解析】
根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.
【详解】
解:∵第1、2、3、4组的频数分别是2、8、10、15,
∴50-2-8-10-15=15
∴15÷50=0.3
故答案为0.3.
此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.
22、∠DAB=90°.
【解析】
根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.
【详解】
解:可以添加条件∠DAB=90°,
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∵∠DAB=90°,
∴四边形ABCD是矩形,
故答案为∠DAB=90°.
此题主要考查了矩形的判定,关键是掌握矩形的判定定理.
23、8
【解析】
先根据为图象端点,得到Q此时与B点重合,故得到AB=4,再根据,根据,得到,从而得到,再代入即可求出x,过点作于.设,根据,利用三角函数表示出,,故在中,利用得到方程即可求出m的值.
【详解】
解∵为图象端点,
∴与重合,
∴.
∵四边形为菱形,,
∴,此时,
∵=
∴,即.
∴当时,,即;
过点作于.设.
∵,
∴,.
在中,
∴,即,
∴,即.
故答案为:8;.
此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法.
二、解答题(本大题共3个小题,共30分)
24、(1); (2)22.1
【解析】
(1)使用待定系数法列出方程组求解即可.
(2)把x=12代入(1)中的函数关系式,就可求解.
【详解】
(1)设函数关系式为y=kx+b,根据题意得
解得
∴y与x之间的函数关系式为y=1.1x+4.1.
(2)当x=12时,y=1.1×12+4.1=22.1.
∴桌面上12个整齐叠放的饭碗的高度是22.1cm.
本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.
25、(1)秒后足球回到地面;(2)经过秒或秒足球距地面的高度为米.
【解析】
(1)令,解方程即可得出答案;
(2)令,解方程即可.
【详解】
解:令,
解得:(舍),,
∴秒后足球回到地面;
令,
解得:.
即经过秒或秒,足球距地面的高度为米.
本题考查的知识点是二次函数的实际应用,根据题意分别令为不同的值解答本题.
26、 (1)25,1;(2)小明回家骑行速度至少是0.2千米/分.
【解析】
(1)根据函数图象,先求出爸爸骑共享单车的速度以及匀速步行的速度,再求出返回途中爸爸从驿站到公园入口的时间,得到m的值;然后求出爸爸从公园入口到家的时间,进而得到n的值;
(2)根据小明要在爸爸到家之前赶上得到不等关系:(n﹣爸爸从驿站到家的时间﹣小明到达驿站后逗留的10分钟)×小明回家骑行的速度≥驿站与家的距离,依此列出不等式,求解即可.
【详解】
(1)由题意,可得爸爸骑共享单车的速度为:=0.2(千米/分),
爸爸匀速步行的速度为:=0.1(千米/分),
返回途中爸爸从驿站到公园入口的时间为:=5(分钟),
所以m=20+5=25;
爸爸从公园入口到家的时间为:=20(分钟),
所以n=25+20=1.
故答案为25,1;
(2)设小明回家骑行速度是x千米/分,
根据题意,得(1﹣25﹣10)x≥2,
解得x≥0.2.
答:小明回家骑行速度至少是0.2千米/分.
本题考查了一次函数的应用,一元一次不等式的应用,路程、速度与时间关系的应用,理解题意,从图象中获取有用信息是解题的关键.
题号
一
二
三
四
五
总分
得分
用水量(立方米)
缴纳生活用水费用(元)
甲用户
8
27.6
乙用户
12
46.3
相关试卷
这是一份2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年云南省昆明市九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年云南省富宁县数学九上开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。