搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年云南省昭通市巧家县数学九年级第一学期开学综合测试试题【含答案】

    2024-2025学年云南省昭通市巧家县数学九年级第一学期开学综合测试试题【含答案】第1页
    2024-2025学年云南省昭通市巧家县数学九年级第一学期开学综合测试试题【含答案】第2页
    2024-2025学年云南省昭通市巧家县数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年云南省昭通市巧家县数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份2024-2025学年云南省昭通市巧家县数学九年级第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若代数式在实数范围内有意义,则实数的取值范围是( )
    A.B.C.D.
    2、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
    A.正方形B.等边三角形C.平行四边形D.正五边形
    3、(4分)下列各组数,不能作为直角三角形的三边长的是( )
    A.3,4,5B.1,1,C.2,3,4D.6,8,10
    4、(4分)星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )
    A.从家出发,休息一会,就回家
    B.从家出发,一直散步(没有停留),然后回家
    C.从家出发,休息一会,返回用时20分钟
    D.从家出发,休息一会,继续行走一段,然后回家
    5、(4分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠AED′的大小为( )
    A.110°B.108°C.105°D.100°
    6、(4分)如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为
    A.B.C.D.
    7、(4分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
    A.B.C.D.
    8、(4分)若点是正比例函数图象上任意一点,则下列等式一定成立的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,小丽在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网3米的位置上,已知她的击球高度是2.4米,则她应站在离网________米处.
    10、(4分)已知一次函数与图象如图所示,则下列结论:①;②;③关于的方程的解为;④当,.其中正确的有_______(填序号).
    11、(4分)若一组数据,,,,的众数是,则这组数据的方差是__________.
    12、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
    13、(4分)将直线y=3x﹣1向上平移1个单位长度,得到的一次函数解析式为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
    15、(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF的中点,连接DG.
    (1)求证:BC=DF;(2)连接BD,求BD∶DG的值.
    16、(8分)如图,正方形ABCD中,E是AD上任意一点,于F点,于G点.
    求证:.
    17、(10分)化简:÷(-a-2),并代入一个你喜欢的值求值.
    18、(10分)一个零件的形状如图所示,工人师傅按规定做得∠B=90°,
    AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD的两条对角线AC,四交于点O,若,,则菱形ABCD的周长为________。
    20、(4分)在比例尺为1:5000的地图上,量得甲,乙两地的距离为30cm,则甲,乙两地的实际距离是__________千米.
    21、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
    22、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.
    23、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数和的图象,分别与x轴交于点A、B,两直线交于点C. 已知点,,观察图象并回答下列问题:
    (1)关于x的方程的解是______;关于x的不等式的解集是______;
    (2)直接写出关于x的不等式组的解集;
    (3)若点,求关于x的不等式的解集和△ABC的面积.
    25、(10分)已知:在矩形ABCD中,点F为AD中点,点E为AB边上一点,连接CE、EF、CF,EF平分∠AEC.
    (1)如图1,求证:CF⊥EF;
    (2)如图2,延长CE、DA交于点K, 过点F作FG∥AB交CE于点G若,点H为FG上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;
    (3)如图3, 过点H作HN⊥CH交AB于点N,若EN=11,FH-GH=1,求GK长.
    26、(12分)已知是方程的两个实数根,且.
    (1)求的值;
    (2)求的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    直接利用分式有意义的条件进而得出答案.
    【详解】
    ∵代数式在实数范围内有意义,
    ∴a-1≠0,
    ∴a≠1.
    故选B.
    此题主要考查了分式有意义的条件,正确把握定义是解题关键.
    2、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、正方形既是轴对称图形,也是中心对称图形,故选A正确;
    B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;
    C、平行四边形不是轴对称图形,是中心对称图形,故C错误;
    D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.
    故选A.
    本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.
    3、C
    【解析】
    根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.
    【详解】
    A. 3 +4=25=5,故能构成直角三角形,故本选项错误;
    B. 1+1=2=(),故能构成直角三角形,故本选项错误;
    C.2+3=13≠4,故不能构成直角三角形,故本选项正确;
    D. 6+8=100=10,故能构成直角三角形,故本选项错误。
    故选C.
    此题考查勾股定理的逆定理,解题关键在于掌握其定义
    4、D
    【解析】
    利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.
    【详解】
    由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.
    故选:D.
    本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.
    5、B
    【解析】
    由平行四边形的性质可得∠B=∠D=52°,由三角形的内角和定理可求∠DEA的度数,由折叠的性质可求∠AED'=∠DEA=108°.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D=52°,且∠DAE=20°,
    ∴∠DEA=180°﹣∠D=∠DAE=108°,
    ∵将△ADE沿AE折叠至△AD′E处,
    ∴∠AED'=∠DEA=108°.
    故选:B.
    本题主要考查平行四边形的性质,三角形的内角和定理以及折叠的性质,掌握折叠的性质是解题的关键.
    6、C
    【解析】
    根据对称性可知:BE=FE,∠AFE=∠ABF=90°,又因为∠C=∠C,所以ΔCEF∽ΔCAB,根据相似性可得出:,BE=EF=,在ΔABC中,由勾股定理可求得AC的值,AB=1,CE=2-BE,将这些值代入该公式求出BE的值.
    【详解】
    解:设BE的长为x,则BE=FE=x、CE=2-x,
    在Rt△ABC中,AC==,
    ∵∠FCE=∠BCA,∠AFE=∠ABE=90°,
    ∴△CEF∽△CAB(两对对应角相等的两三角形相似),

    ∴BE=EF= =×1,x=,
    ∴BE=x=,
    故选:C.
    本题主要考查图形的展开与折叠和矩形的性质,同时学生们还要把握勾股定理和相似三角形的性质知识点.
    7、B
    【解析】
    由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
    故选B.
    8、A
    【解析】
    由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.
    【详解】
    ∵点A(a,b)是正比例函数图象上的一点,
    ∴,
    ∴2a+3b=0.
    故选A
    本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、6
    【解析】
    由题意可得,△ABE∽△ACD,故,由此可求得AC的长,那么BC的长就可得出.
    【详解】
    解:如图所示:
    已知网高,击球高度,,
    由题意可得,

    ∴,
    ∴,
    ∴她应站在离网6米处.
    故答案为:6.
    本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
    10、③④
    【解析】
    根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x>3时,一次函数y1=kx+b在直线y2=x+a的下方,则可对④进行判断.
    【详解】
    解:∵一次函数y1=kx+b经过第一、二、四象限,
    ∴k<0,b>0,所以①错误;
    ∵直线y2=x+a的图象与y轴的交点在x轴,下方,
    ∴a<0,所以②错误;
    ∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,
    ∴x=3时,kx+b=x﹣a,所以③正确;
    当x>3时,y1<y2,所以④正确.
    故答案为③④.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    11、13.1
    【解析】
    首先根据众数的定义求出的值,进而利用方差公式得出答案.
    【详解】
    解:数据0,,8,1,的众数是,



    故答案为:13.1.
    此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.
    12、2
    【解析】
    根据题意先确定x的值,再根据中位数的定义求解.
    【详解】
    解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
    当众数为2,根据题意得:
    解得x=2,
    将这组数据从小到大的顺序排列1,2,2,2,12,
    处于中间位置的是2,
    所以这组数据的中位数是2.
    故答案为2.
    本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
    13、y=3x.
    【解析】
    根据“上加、下减”的原则进行解答即可.
    【详解】
    由“上加、下减”的原则可知,
    将函数y=3x﹣1的图象向上平移1个单位所得函数的解析式为y=3x﹣1+1=3x.
    故答案为y=3x.
    本题考查的是一次函数的图象与几何变换,熟知“上加、下减”的原则是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析
    【解析】
    首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.
    【详解】
    解:∵DE=BF,
    ∴DE+EF=BF+EF,即DF=BE,
    在Rt△ADF和Rt△CBE中,,
    ∴Rt△ADF≌Rt△CBE(HL),
    ∴AF=CE.
    本题考查了全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.
    15、(1)详见解析;(2)
    【解析】
    (1)根据矩形的性质解答即可;
    (2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.
    【详解】
    证明:(1)∵四边形ABCD为矩形,
    ∴AD=BC,∠BAD=∠ADC=90°,
    ∵AF平分∠BAD,
    ∴∠DAF=45°,
    ∴AD=DF,
    ∴BC=DF;
    (2)连接CG,BG,
    ∵点G为EF的中点,
    ∴GF=CG,
    ∴∠F=∠BCG=45°,
    在△BCG与△DFG中,
    ∴△BCG≌△DFG(SAS),
    ∴BG=DG,∠CBG=∠FDG,
    ∴△BDG为等腰直角三角形,
    ∴BD=DG,
    ∴BD:DG=:1.
    此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.
    16、证明见解析
    【解析】
    根据于F点,于G点,可得,根据四边形ABCD是正方形,可得,再根据,,可得:
    ,在和中,由,可判定≌,根据全等三角形的性质可得:.
    【详解】
    证明:于F点,于G点,
    ,
    四边形ABCD是正方形,
    ,
    ,
    又,
    ,
    在和中,
    ,
    ≌,
    ,
    本题主要考查正方形的性质和全等三角形的判定和性质,解决本题的关键是要熟练掌握正方形的性质和全等三角形的判定和性质.
    17、,.
    【解析】
    分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.
    详解:原式=,
    当a=1时,原式=.
    点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.
    18、面积等于36
    【解析】
    试题分析:利用勾股定理求AC,再利用勾股定理逆定理求∠ACB=90°,分别求的面积.
    试题解析:
    ∠B=90°,AB=3,BC=4,AC=
    =169,
    所以∠ACD=90°,
    .
    所以面积是36.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    首先根据菱形的性质可知菱形的对角线垂直平分,然后在Rt△AOD中利用勾股定理求出AD的长,再由菱形的四边形相等,可得菱形ABCD的周长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=AC=3,DO=BD=2,
    在Rt△AOD中,AD=,
    ∴菱形ABCD的周长为4.
    故答案为:4.
    本题考查了菱形的性质以及勾股定理的知识,解答本题的关键是掌握菱形的对角线互相垂直且平分以及勾股定理等知识.
    20、1.1
    【解析】
    设相距30cm的两地实际距离为xcm,根据题意可得方程l:1000=30:x,解此方程即可求得答案,注意统一单位.
    【详解】
    解:设相距30cm的两地实际距离为xcm,
    根据题意得:l:1000=30:x,
    解得:x=110000,
    ∵110000cm=1.1km,
    ∴甲,乙两地的实际距离是1.1千米.
    故答案为:1.1.
    此题考查了比例尺的性质.此题比较简单,解题的关键是注意理解题意,根据题意列方程,注意统一单位.
    21、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    解:∵S甲2=0.18,S乙2=0.32,
    ∴S甲2<S乙2,
    ∴身高较整齐的球队是甲;
    故答案为:甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、-5
    【解析】
    根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.
    【详解】
    ∵点P(1,2)关于x轴的对称点为P′
    ∴点P′坐标为(1,-2)
    又∵点P′在直线y=kx+3上
    ∴-2=k+3
    解得k=-5,
    故答案为-5.
    本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.
    23、32
    【解析】
    根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
    【详解】
    ∵数据方差的计算公式是,
    ∴样本容量为8,平均数为4,
    ∴该组数据的总和为8×4=32,
    故答案为:32
    本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)x=-1,;(2)-1<x<2;(3),.
    【解析】
    (1)利用直线与x轴交点即为y=0时,对应x的值,进而得出答案;
    (2)利用两直线与x轴交点坐标,结合图象得出答案;
    (3)两条直线相交于点C,根据点C的左右两边图像的位置可确定答案;利用三角形面积公式求得即可.
    【详解】
    解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(-1,0)、B(2,0),
    ∴关于x的方程k1x+b1=0的解是x=-1,
    关于x的不等式kx+b<0的解集,为x>2,
    故答案为x=-1,x>2;
    (2)根据图象可以得到关于x的不等式组的解集-1<x<2;
    (3)∵C(1, 3),
    根据图象可以得到关于x的不等式k1x+b1>kx+b的解集:
    ∵AB=3,
    ∴S△ABC=AB•yC=×3×3=.
    此题主要考查了一元一次方程的解、一次函数与不等式,一次函数与不等式组,三角形面积,正确利用数形结合解题是解题关键.
    25、 (1)证明见解析;(2)证明见解析;(3)CN=25.
    【解析】
    (1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;
    (2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;
    (3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α, 先证明得到FG=CG=GE,∠CGT=2,再由FG是BC的中垂线,可得BG = CG, ∠CGT=∠FGK=∠BGT=2,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据,可得关于m的方程,解方程求得m的值即可求得答案.
    【详解】
    (1)如图,延长EF交CD延长线于点Q,
    ∵矩形ABCD,AB∥CD,
    ∴∠AEF=∠CQE, ∠A=∠QDF,
    又∵EF 平分∠AEC ,
    ∴∠AEF=∠CEF,
    ∴∠CEF=∠CQE,
    ∴CQ=CE,
    ∵点F是AD中点,
    ∴AF=DF,
    ∴△FQD≌△FEA,
    ∴EF=FQ,
    又∵CE=CQ,
    ∴CF⊥EF;
    (2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,
    ∵CQ=CE ,CF⊥EF,
    ∴∠DCF=∠FCE,
    又∵FD⊥CD,
    ∴FM=DF,
    ∵FG//AB,∴∠DFH=∠DAC=90°,
    ∴∠DFH=∠FDP=∠DPH=90°,
    ∴四边形DFHP是矩形,
    ∴DF=HP,
    ∴FM= DF=HP,
    ∵∠CHG=∠BCE,AD∥BC,FG∥CD,
    ∴∠K=∠BCE=∠CHG=∠DCH,
    又∵∠FMK=∠HPC=90°,
    ∴△HPC≌△FMK,
    ∴CH=FK;
    (3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,
    ∵FG∥CD ,∴∠DCF=∠CFG,
    ∴∠FCG=∠CFG,∴FG=CG,
    ∵CF⊥EF,
    ∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,
    ∴∠GFE=∠FEG,∴GF=FE,
    ∴FG=CG=GE,∠CGT=2,
    ∵FG是BC的中垂线,
    ∴BG = CG, ∠CGT=∠FGK=∠BGT=2,
    ∵∠CHG=∠BCE=90°-2,∠CHN=90°,
    ∴∠GHN=∠FGK=∠BGT=2,
    ∴HN∥BG,
    ∴四边形HGBN是平行四边形,
    ∴HG=BN,HN=BG = CG =FG,
    ∴△HNC≌△KGF,
    ∴GK=CN,∠HNC=∠FGK=∠NHT=2,
    ∴HT=CT=TN ,
    ∵FH-HG=1,∴设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,
    ∵GT=,∴CN=2HT=11+2m,
    ∵,

    ∴(舍去),,
    ∴CN=GK=2HT=25.
    本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    26、(1);(2)
    【解析】
    (1)利用根与系数的关系得到x1+x2=2,x1x2=q,则通过解方程组,可得,然后计算q的值;
    (2)先利用一元二次方程根的定义得到x12=2x1+2,则x13=6x1+4,所以x13-3x12-2x2+3化为-2x2+1,然后把x2=1+代入计算即可.
    【详解】
    解:(1)根据题意得x1+x2=2,x1x2=q,
    由,可得.
    所以, .
    (2)∵x1是方程x2-2x-2=0的实数根,,∴,即,
    .
    本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,.
    题号





    总分
    得分

    相关试卷

    2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年云南省巧家县九上数学开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年云南省昭通市巧家县九年级上学期数学期末试题及答案:

    这是一份2022-2023学年云南省昭通市巧家县九年级上学期数学期末试题及答案,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    云南省昭通市巧家县2022-2023学年九年级下学期期中数学试卷(含答案):

    这是一份云南省昭通市巧家县2022-2023学年九年级下学期期中数学试卷(含答案),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map