2024-2025学年长郡教育集团九年级数学第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果三条线段的长a,b,c满足a2=c2-b2,则这三条线段组成的三角形是( )
A.锐角三角形B.直角三角形C.钝角三角形D.无法确定
2、(4分)从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )
A.平均数B.中位数C.众数D.方差
3、(4分)若△ABC∽△DEF,相似比为4:3,则对应面积的比为( )
A.4:3B.3:4C.16:9D.9:16
4、(4分)如图,经过点的直线与直线相交于点,则不等式的解集为( )
A.B.C.D.
5、(4分)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是
A.B.C.D.
6、(4分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是( )
A.∠A和∠B互为补角B.∠B和∠ADE互为补角
C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角
7、(4分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
A.9B.12C.9D.18
8、(4分)用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( )
A.直角三角形的每个锐角都小于45°
B.直角三角形有一个锐角大于45°
C.直角三角形的每个锐角都大于45°
D.直角三角形有一个锐角小于45°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)工人师傅给一幅长为,宽为的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为. 设上面留白部分的宽度为,可列得方程为________。
10、(4分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=________cm.
11、(4分)若实数x,y满足+,则xy的值是______.
12、(4分)在平面直角坐标系xOy中,点A(2,﹣3)关于x轴对称的点B的坐标是______.
13、(4分)如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是平行四边形, EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.
15、(8分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.
求证:AE=FE.
16、(8分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
17、(10分)如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.
(1)求此抛物线的解析式(a、b、c可用含n的式子表示);
(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E的坐标;
(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.
18、(10分)二次根式计算:
(1);
(2);
(3)()÷;
(4).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF.则∠CDF等于_____.
20、(4分)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
21、(4分)某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.
22、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
23、(4分)如图,在梯形中, ,对角线,且,则梯形的中位线的长为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=1.
(1)连接BC,求BC的长;
(2)求△BCD的面积.
25、(10分)先化简,再求值: ,其中x=
26、(12分)(1)先化简,再求值:,其中;
(2)三个数4,,在数轴上从左到右依次排列,求a的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“勾股定理的逆定理”结合已知条件分析判断即可.
【详解】
解:∵三条线段的长a,b,c满足a2=c2-b2,
∴a2+b2=c2,
∴这三条线段组成的三角形是直角三角形
故选B.
本题考查熟知“若三角形的三边长分别为a、b、c,且满足a2+b2=c2,则该三角形是以c为斜边的直角三角形”是解答本题的关键.
2、C
【解析】
服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.
【详解】
由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.
故选(C)
本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;
3、C
【解析】
直接利用相似三角形的性质求解.
【详解】
解:∵,相似比为
∴它们的面积的比为
故选:C
本题考查了相似三角形的性质---相似三角形面积之比等于相似比的平方,属基础题,准确利用性质进行计算即可.
4、C
【解析】
先利用直线y=-2x+2的解析式确定A点坐标,然后结合函数特征写出直线y=kx+b在直线y=-2x+2上方所对应的自变量的范围即可.
【详解】
解:把代入y=﹣2x+2得﹣2m+2=,解得m=﹣,
当x>﹣时,﹣2x+2<kx+b.
故选C.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、D
【解析】
根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.
【详解】
根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.观察选项即可的D选项符合条件.
故选D.
本题主要考查正方形的折叠问题,关键在于确定数量.
6、C
【解析】
试题分析:根据余角的定义,即可解答.
解:∵∠C=90°,
∴∠A+∠B=90°,
∵∠B=∠ADE,
∴∠A+∠ADE=90°,
∴∠A和∠ADE互为余角.
故选C.
考点:余角和补角.
7、D
【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论
【详解】
ABCD为平行四边形,
所以,AD∥BC,
所以,∠AEG=∠EGF,
由折叠可知:∠GEF=∠DEF=60°,
所以,∠AEG=60°,
所以,∠EGF=60°,
所以,三有形EGF为等边三角形,
因为EF=6,
所以,△GEF的周长为18
此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°
8、A
【解析】
分析:找出原命题的方面即可得出假设的条件.
详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.
点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(120+4x)(40+2x)=1
【解析】
设上面留白部分的宽度为xcm,则左右空白部分为2x,根据题意得出方程,计算即可求出答案.
【详解】
设上面留白部分的宽度为xcm,则左右空白部分为2x,可列得方程为:
(120+4x)(40+2x)=1.
故答案为:(120+4x)(40+2x)=1.
此题考查由实际问题抽象出一元二次方程,正确表示出变化后的长与宽是解题关键.
10、6+
【解析】
由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.
【详解】
解:作AB的垂直平分线,交AC于点E,
∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,
∴tan30°==,
解得:CD=cm,
∵BC=3cm,∴BE=6cm,∴CE=3cm,
∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.
11、
【解析】
根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.
【详解】
因为,
所以=0, ,
解得:=-2, =,
所以=(-2)×=-2.
故答案为-2.
本题考查非负数的性质-算术平方根,非负数的性质-偶次方.
12、(2,3)
【解析】
一个点关于x轴的对称点横坐标不变,纵坐标变为相反数.
【详解】
在平面直角坐标系xOy中,点A(2,-3)关于x轴对称的点B的坐标是(2,3),所以答案是(2,3).
本题主要考查了关于x轴对称的点的特征,熟练掌握相关知识是解答本题的关键.
13、
【解析】
根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.
【详解】
过E作EH⊥CD于点H.
∵∠ADG+∠GDH=∠EDH+∠GDH,
∴∠ADG=∠EDH.
又∵DG=DE,∠DAG=∠DHE.
∴△ADG≌△HDE.
∴HE=AG.
∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.
∴在直角△ADG中,
AG=,
∴EH=AG=2.
∴△CDE的面积为CD·EH=××2=.
故答案为.
考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、118°
【解析】
根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=62°,求得∠C的度数,然后根据平行四边形的性质得出∠A=∠C,继而求得∠A的度数.
【详解】
解:∵EB⊥BC,ED⊥CD.
∴∠EBC=∠EDC=90°
∵∠E=62°
∴∠C=360°-∠EBC-∠EDC-∠E=118°
∵四边形ABCD为平行四边形
∴∠A=∠C=118°
本题考查了平行四边形的性质及多边形的内角和等知识,熟练掌握四边形的内角和为360°与平行四边形对角相等是解题的关键.
15、见解析
【解析】
由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠D=∠FCE,
∵点E是CD的中点,
∴DE=CE,
∵∠AED=∠FEC,
∴△ADE≌△FCE,
∴AE=FE.
熟悉平行四边形的性质和全等三角形的判定与性质”是解答本题的关键.
16、
【解析】
(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°,
∵BE=DF,∴OE=OF,
在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,
∴△AOE≌△COF(SAS),∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,∴OA=AB=6,
∴AC=2OA=12,
在Rt△ABC中,BC==6,
∴矩形ABCD的面积=AB•BC=6×6=36.
17、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.
【解析】
(3)先根据四边形ABCD是矩形,点B的坐标为(n,3)(n>5),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标;把A、A′、C′三点的坐标代入即可得出a、b、c的值,进而得出其抛物线的解析式;
(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k-2)x-3=5,根据根与系数的关系求出k的值,进而求出D(-3,5),E(3,4);
(2)设P(5,p),根据平行四边形性质及点M坐标可得Q(2,4+p),分P点在AM下方与P点在AM上方两种情况,根据重合部分的面积关系及对称性求得点P的坐标后即可得▱APQM面积.
【详解】
解:(3)∵四边形ABCO是矩形,点B的坐标为(n,3)(n>5),
∴A(n,5),C(5,3),
∵矩形OA′B′C′由矩形OABC旋转而成,
∴A′(5,n),C′(﹣3,5);
将抛物线解析式为y=ax2+bx+c,
∵A(n,5),A′(5,n),C′(﹣3,5),
∴ ,
解得,
∴此抛物线的解析式为:y=﹣x2+(n﹣3)x+n;
(2)对称轴为x=3,得﹣=3,解得n=2,
则抛物线的解析式为y=﹣x2+2x+2.
由,
整理可得x2+(k﹣2)x﹣3=5,
∴x3+x2=﹣(k﹣2),x3x2=﹣3.
∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.
∴当k=2时,(x3﹣x2)2的最小值为4,即|x3﹣x2|的最小值为2,
∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.
∴当|x3﹣x2|最小时,抛物线与直线的交点为D(﹣3,5),E(3,4);
(2)①当P点在AM下方时,如答图3,
设P(5,p),易知M(3,4),从而Q(2,4+p),
∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
∴PQ′必过AM中点N(5,2),
∴可知Q′在y轴上,
易知QQ′的中点T的横坐标为3,而点T必在直线AM上,
故T(3,4),从而T、M重合,
∴▱APQM是矩形,
∵易得直线AM解析式为:y=2x+2,
∵MQ⊥AM,
∴直线QQ′:y=﹣x+,
∴4+p=﹣×2+,
解得:p=﹣,
∴PN=,
∴S▱APQM=2S△AMP=4S△ANP=4××PN×AO=4×××3=5;
②当P点在AM上方时,如答图2,
设P(5,p),易知M(3,4),从而Q(2,4+p),
∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
∴PQ′必过QM中点R(,4+),
易得直线QQ′:y=﹣x+p+5,
联立,
解得:x=,y= ,
∴H(,),
∵H为QQ′中点,
故易得Q′(,),
由P(5,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,
将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,
整理得:p2﹣9p+34=5,
解得p3=7,p2=2(与AM中点N重合,舍去),
∴P(5,7),
∴PN=5,
∴S▱APQM=2S△AMP=2××PN×|xM﹣xA|=2××5×2=3.
综上所述,▱APQM面积为5或3.
本题为二次函数的综合应用,涉及待定系数法确定函数解析式、二次函数的性质、一元二次方程根与系数的关系、方程思想及分类讨论思想等知识点.在(2)中利用求得n的值是解题的关键,在(2)中确定出k的值是解题的关键,在(2)中根据点P的位置分类讨论及根据已知条件求出点P的坐标是解决本题的难点.
18、(1)8;(2);(3);(4)1.
【解析】
(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(2)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(3)首先化简二次根式,进而利用二次根式除法运算法则得出答案;
(4)直接利用平方差公式计算得出答案.
【详解】
(1)=3+5=8;
(2),
=,
=;
(3)()÷
=
=;
(4),
=,
=12﹣1,
=1.
此题考查二次根式的加减法计算,混合运算,乘法公式,将每个二次根式正确化简成最简二次根式,再根据运算法则进行计算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、75°
【解析】
根据菱形的性质求出∠ADC=110°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.
【详解】
解:连接BD,BF,
∵∠BAD=70°,
∴∠ADC=110°,
又∵EF垂直平分AB,AC垂直平分BD,
∴AF=BF,BF=DF,
∴AF=DF,
∴∠FAD=∠FDA=35°,
∴∠CDF=110°-35°=75°.
故答案为75°.
此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.
20、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
21、10
【解析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.
【详解】
解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),
设该一次函数的解析式为y=kx+b,
则有:,
解得:,
∴y=x+1.
将x=11代入一次函数解析式,
故出租车费为10元.
故答案为:10.
此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.
22、π+2
【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.
【详解】
原式=.
故答案为:.
本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
23、1
【解析】
解:过C作CE∥BD交AB的延长线于E,
∵AB∥CD,CE∥BD,
∴四边形DBEC是平行四边形,
∴CE=BD,BE=CD
∵等腰梯形ABCD中,AC=BD∴CE=AC
∵AC⊥BD,CE∥BD,
∴CE⊥AC
∴△ACE是等腰直角三角形,
∵AC=,
∴AE =AC=10,
∴AB+CD =AB+BE=10,
∴梯形的中位线=AE=1,
故答案为:1.
本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.
二、解答题(本大题共3个小题,共30分)
24、(1)BC=15;(2)S△BCD=2.
【解析】
(1)根据勾股定理可求得BC的长.
(2)根据勾股定理的逆定理可得到△BCD也是直角三角形,根据三角形的面积即可得到结论.
【详解】
(1)∵∠A=90°,AB=9,AC=12
∴BC==15,
(2)∵BC=15,BD=8,CD=1
∴BC2+BD2=CD2
∴△BCD是直角三角形
∴S△BCD=×15×8=2.
本题考查了勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理,通过作辅助线证明三角形是直角三角形是解决问题的关键.
25、,
【解析】
将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
【详解】
解:原式=
=
=
因为x= ,所以原式= .
考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
26、 (1)-;(2)
【解析】
(1)直接将括号里面通分运算,进而结合分式的加减运算法则计算得出答案;
(2)根据题意得出不等式组,进而得出答案.
【详解】
解:(1)
当时,代入得:原式
(2)解:根据题意得,
解得:,
∴原不等式组的解集是﹐
∴a的取值范围是﹒
此题主要考查了分式的化简求值以及不等式组的解法,正确掌握分式的混合运算法则是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年辽宁抚顺新抚区九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年辽宁抚顺新抚区九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省临夏市第一中学九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年甘肃省临夏市第一中学九年级数学第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。