2019-2020学年江苏省南京市玄武区九年级上学期数学期末试题及答案
展开
这是一份2019-2020学年江苏省南京市玄武区九年级上学期数学期末试题及答案,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.一元二次方程x2=-3x的解是( )
A. x=0B. x=3C. x1=0,x2=3D. x1=0,x2=-3
【答案】D
【解析】
【分析】
先移项,然后利用因式分解法求解.
【详解】解:(1)x2=-3x,
x2+3x=0,
x(x+3)=0,
解得:x1=0,x2=-3.
故选:D.
【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
2.一组数据0、-1、3、2、1的极差是( )
A. 4B. 3C. 2D. 1
【答案】A
【解析】
【分析】
根据极差的概念最大值减去最小值即可求解.
【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.
故选A.
【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.
3.如图,已知一组平行线,被直线、所截,交点分别为、、和、、,且,,,则( )
A. 4.4B. 4C. 3.4D. 2.4
【答案】D
【解析】
【分析】
根据平行线等分线段定理列出比例式,然后代入求解即可.
【详解】解:∵
∴ 即
解得:EF=2.4
故答案为D.
【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.
4.如图,AB 是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为( )
A. 9 cmB. 10 cmC. 11 cmD. 12 cm
【答案】B
【解析】
【分析】
由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.
【详解】解:连接OD,设⊙O半径OD为R,
∵AB 是⊙O的直径,弦CD⊥AB于点M ,
∴DM=CD=4cm,OM=R-2,
在RT△OMD中,
OD²=DM²+OM²即R²=4²+(R-2)²,
解得:R=5,
∴直径AB的长为:2×5=10cm.
故选B.
【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.
5.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有( )
①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.
A 4个B. 3个C. 2个D. 1个
【答案】C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;
由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.
故选:C.
【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
6.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为( )
A. 7 : 12B. 7 : 24C. 13 : 36D. 13 : 72
【答案】B
【解析】
【分析】
根据已知条件想办法证明BG=GH=DH,即可解决问题;
【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AB=CD,AD=BC,
∵DF=CF,BE=CE,
∴,,
∴,
∴BG=GH=DH,
∴S△ABG=S△AGH=S△ADH,
∴S平行四边形ABCD=6 S△AGH,
∴S△AGH:=1:6,
∵E、F分别是边BC、CD的中点,
∴,
∴,
∴,
∴=7∶24,
故选B.
【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.
二、填空题(本大题共10小题,每小题2分,共20分,将答案填在答题纸上)
7.若=,则的值为________.
【答案】
【解析】
【分析】
根据条件可知a与b的数量关系,然后代入原式即可求出答案.
【详解】∵=,
∴b=a,
∴=,
故答案为:.
【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.
8.设、是关于的方程的两个根,则__________.
【答案】2
【解析】
【分析】
根据根与系数的关系确定和,然后代入计算即可.
【详解】解:∵
∴=-3, =-5
∴-3-(-5)=2
故答案为2.
【点睛】本题主要考查了根与系数的关系,牢记对于(a≠0),则有:,是解答本题的关键.
9.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
【答案】y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.
故答案为:y=-5(x+2)2-3.
【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.
10.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.
【答案】∠P=∠B(答案不唯一)
【解析】
【分析】
要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.
【详解】解:这个条件为:∠B=∠P
∵∠PAB=∠QAC,
∴∠PAQ=∠BAC
∵∠B=∠P,
∴△APQ∽△ABC,
故答案为:∠B=∠P或∠C=∠Q或.
【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.
11.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.
【答案】
【解析】
【分析】
分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;
【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,
边长为30cm的正方形ABCD的面积=302=900cm2,
∴P(飞镖落在圆内)=,故答案为:.
【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.
12.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.
【答案】15π.
【解析】
【分析】
根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,
所以这个圆锥的侧面积=×5×2π×3=15π.
【点睛】本题考查圆锥侧面积计算,掌握公式,准确计算是本题的解题关键.
13.如图,边长为2的正方形,以为直径作,与相切于点,与交于点,则的面积为__________.
【答案】
【解析】
【分析】
运用切线长定理和勾股定理求出DF,进而完成解答.
【详解】解:∵与相切于点,与交于点
∴EF=AF,EC=BC=2
设EF=AF=x,则CF=2+x,DF=2-x
在Rt△CDF中,由勾股定理得:
DF2=CF2-CD2,即(2-x)2=(2+x)2-22
解得:x=,则DF=
∴的面积为=
故答案为.
【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.
14.二次函数y=ax2+bx+c(a,b,c 为常数,且a≠0)的图像上部分点的横坐标x和纵
坐标y的对应值如下表
关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.
【答案】-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.
【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得
,解得,∴y=x²+x-3,
∵△=b2-4ac=12-4×1×(-3)=13,
∴x==−1±,
∵50
∵商家规定该运动服售价不得超过40元/件
∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元
∴-10×402+(1000+10m)×40-21000-700m=2400
解得:m=2
∴m的值为2.
【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.
27.在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为 .
【答案】(1)见解析;(2)的面积为;(3)、5、15、
【解析】
【分析】
(1)先说明∠CEF=∠AFB和,即可证明∽;
(2)过点作交与点,交于点,则;再结合矩形的性质,证得△FGE∽△AHF,得到AH=5GF;然后运用勾股定理求得GF的长,最后运用三角形的面积公式解答即可;
(3)分点E在线段CD上和DC的延长线上两种情况,然后分别再利用勾股定进行解答即可.
【详解】(1)解:∵矩形中,
∴
由折叠可得
∵
∴
∴
在和中
∵,
∴∽
(2)解:过点作交与点,交于点,则
∵矩形中,
∴
由折叠可得:,,
∵
∴
∴
在和中
∵
∴∽
∴
∴
∴
在中,
∵
∴
∴
∴的面积为
(3)设DE=x,以点E、F、C为顶点的三角形是直角三角形,则:
①当点E在线段CD上时,∠DAE45°,由折叠性质得:∠AEF=∠AED>45°,
∴∠DEF=∠AED+∠AEF>90°,
∴∠CEF
相关试卷
这是一份2019-2020学年江苏省南京市建邺区九年级上学期数学期末试题及答案,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年江苏省南京市建邺区九年级上学期数学期末试题及答案,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年江苏省南京市玄武区九年级上学期数学期中试题及答案,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。