开学活动
搜索
    上传资料 赚现金

    2024-2025学年浙江湖州德清县九年级数学第一学期开学监测试题【含答案】

    2024-2025学年浙江湖州德清县九年级数学第一学期开学监测试题【含答案】第1页
    2024-2025学年浙江湖州德清县九年级数学第一学期开学监测试题【含答案】第2页
    2024-2025学年浙江湖州德清县九年级数学第一学期开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年浙江湖州德清县九年级数学第一学期开学监测试题【含答案】

    展开

    这是一份2024-2025学年浙江湖州德清县九年级数学第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法正确的是( )
    A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形
    C.三条边相等的四边形是菱形 D.三个角是直角的四边形是矩形
    2、(4分)使 有意义的a的取值范围为( )
    A.a≥1B.a>1C.a≥﹣1D.a>﹣1
    3、(4分)为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指( )
    A.200
    B.我县2019年八年级学生期末数学成绩
    C.被抽取的200名八年级学生
    D.被抽取的200名我县八年级学生期末数学成绩
    4、(4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()
    A.20B.25C.35D.27
    5、(4分)小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是( )
    A.1.65米是该班学生身高的平均水平
    B.班上比小华高的学生人数不会超过25人
    C.这组身高数据的中位数不一定是1.65米
    D.这组身高数据的众数不一定是1.65米
    6、(4分)若点在反比例函数的图像上,则下列各点一定在该图像上的是( )
    A.B.C.D.
    7、(4分)无论x取什么值,下面的分式中总有意义的是( )
    A.B.C.D.
    8、(4分)如图,,,,则的度数为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.
    10、(4分)若最简二次根式与是同类二次根式,则=_______.
    11、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.
    12、(4分)正比例函数图象经过,则这个正比例函数的解析式是_________.
    13、(4分)已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1 y2(填“>”或“<”或“=”).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,中,点为边上一点,过点作于,已知.
    (1)若,求的度数;
    (2)连接,过点作于,延长交于点,若,求证:.
    15、(8分)(1)计算
    (2)解不等式组,并写出不等式组的非负整数解。
    (3)解分式方程:
    16、(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.
    17、(10分)为了选拔一名学生参加全市诗词大赛,学校组织了四次测试,其中甲乙两位同学成绩较为优秀,他们在四次测试中的成绩(单位:分)如表所示.
    (1)分别求出两位同学在四次测试中的平均分;
    (2)分别求出两位同学测试成绩的方差.你认为选谁参加比赛更合适,请说明理由.
    18、(10分)如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD.
    (1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 个单位长度;△AOC与△OBD关于直线对称,则对称轴是 ;△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是 度;
    (2)连接AD,交OC于点E,求∠AEO的度数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算: =______________
    20、(4分)如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,P点从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE,设点P运动的时间为t秒,则当t的值为______时,∠PAE为等腰三角形?
    21、(4分)若与最简二次根式能合并成一项,则a=______.
    22、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.
    23、(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)计算:2﹣6+3
    (2)已知x=+1,y=﹣1,求代数式的值.
    25、(10分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.
    解决问题:
    (1)下列分式中属于真分式的是( )
    A. B. C. D.
    (2)将假分式分别化为带分式;
    (3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.
    26、(12分)某校团委积极响应南充市“书香天府万卷南充”全民阅读活动,号召全校学生积极捐献图书共建“书香校园”.八(1)班40名同学都捐献了图书,全班40名同学共捐图书320册.班长统计了全班捐书情况如表:
    (1)分别求出该班级捐献7册图书和8册图书的人数;
    (2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由矩形和菱形的判定方法得出选项A、B、C错误,选项D正确.
    【详解】
    A、∵对角线互相垂直平分的四边形是菱形,
    ∴选项A错误;
    B、∵对角线互相平分且相等的四边形是矩形,
    ∴选项B错误;
    C、∵四条边相等的四边形是菱形,
    ∴选项C错误;
    D、∵三个角是直角的四边形是矩形,
    ∴选项D正确;
    故选:D.
    本题考查了矩形的判定方法、菱形的判定方法;熟记矩形和菱形的判定方法是解决问题的关键.
    2、C
    【解析】
    根据二次根式有意义的条件:被开方数是非负数列不等式,解之即可得出答案.
    【详解】
    ∵ 有意义,
    ∴,
    解得a≥﹣1.
    故选C.
    本题考查了二次根式有意义的条件.利用二次根式定义中的限制性条件:被开方数是非负数列出不等式是解题的关键.
    3、D
    【解析】
    根据样本是总体中所抽取的一部分个体解答即可.
    【详解】
    本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.
    故选:D.
    本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    4、D
    【解析】
    第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1= 个,进一步求得第(6)个图形中面积为1的正方形的个数即可.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个,
    则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。
    故选:D
    此题考查规律型:图形的变化类,解题关键在于找到规律
    5、B
    【解析】
    根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:
    A、1.65米是该班学生身高的平均水平,正确;
    B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;
    C、这组身高数据的中位数不一定是1.65米,正确;
    D、这组身高数据的众数不一定是1.65米,正确.
    故选B.
    6、C
    【解析】
    将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.
    【详解】
    解:将点(-1,2)代入中,解得:,
    ∴ 反比例函数解析式为,
    时,,A错误;
    时,,B错误;
    时,,C正确;
    时,,D错误;
    故选C.
    本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.
    7、B
    【解析】
    根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可
    【详解】
    解:A.当x=0时,分式无意义,故本选项错误;
    B. 对任意实数,x2+1≠0,分式有意义,故本选项正确;
    C.当x=0时,分母都等于0,分式无意义,故本选项错误;
    D. 当x=-1时,分式无意义,故本选项错误.
    故选B
    本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
    8、A
    【解析】
    由,易求,再根据,易求,于是根据进行计算即可.
    【详解】
    ,,

    又,,


    .
    故选:.
    本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.
    【详解】
    解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,
    由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,
    ∴∠MON=∠MOP+∠NOP=2∠AOB=90°,
    ∴△MON为等腰直角三角形.
    ∴MN=,
    所以△PQR周长的最小值为,
    故答案为:.
    此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.
    10、4
    【解析】
    根据同类二次根式的定义,被开方数相等,由此可得出关于x的方程,进而可求出x的值.
    【详解】
    解:由题意可得:

    解:
    当时,与都是最简二次根式
    故答案为:4.
    本题考查了同类二次根式与最简二次根式的定义,掌握定义是解题的关键.
    11、2
    【解析】
    根据中位数和众数的定义分析可得答案.
    【详解】
    解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
    所以这5个数据分别是x,y,2,1,1,且x<y<2,
    当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
    所以这组数据可能的最大的和是0+1+2+1+1=2.
    故答案为:2.
    主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    12、
    【解析】
    设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
    【详解】
    解:设这个正比例函数的解析式为y=kx(k≠0),
    ∵正比例函数的图象经过点(3,−6),
    ∴−6=3k,
    解得k=−2,
    ∴y=−2x.
    故答案是:y=−2x.
    此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
    13、<.
    【解析】
    试题分析:∵正比例函数的,∴y随x的增大而增大.
    ∵,∴y1<y1.
    考点:正比例函数的性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)∠BEA=70°;(2)证明见解析;
    【解析】
    (1)作BJ⊥AE于J.证明BJ是∠ABE的角平分线即可解决问题.
    (2)作EM⊥AD于M,CN⊥AD于N,连接CH.证明△AEF≌△AEM(HL),△AGE≌△HGC(SAS),△EMA≌△CNH(HL),即可解决问题.
    【详解】
    (1)解:作BJ⊥AE于J.
    ∵BF⊥AB,
    ∴∠ABJ+∠BAJ=90°,∠AEF+∠EAF=90°,
    ∴∠ABJ=∠AEF,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠ABC,
    ∵∠D=2∠AEF,
    ∴∠ABE=2∠AEF=2∠ABJ,
    ∴∠ABJ=∠EBJ,
    ∵∠ABJ+∠BAJ=90°,∠EBJ+∠BEJ=90°,
    ∴∠BAJ=∠BEJ,
    ∵∠BAE=70°,
    ∴∠BEA=70°.
    (2)证明:作EM⊥AD于M,CN⊥AD于N,连接CH.
    ∵AD∥BC,
    ∴∠DAE=∠BEA,
    ∵∠BAE=∠BEA,
    ∴∠BAE=∠DAE,
    ∵EF⊥AB,EM⊥AD,
    ∴EF=EM,
    ∵EA=EA,∠AFE=∠AME=90°,
    ∴Rt△AEF≌Rt△AEM(HL),
    ∴AF=AM,
    ∵EG⊥CG,
    ∴∠EGC=90°,
    ∵∠ECG=45°,
    ∠GCE=45°,
    ∴GE=CG,
    ∵AD∥BC,
    ∴∠GAH=∠ECG=45°,∠GHA=∠CEG=45°,
    ∴∠GAH=∠GHA,
    ∴GA=GH,
    ∵∠AGE=∠CGH,
    ∴△AGE≌△HGC(SAS),
    ∴EA=CH,
    ∵CM=CN,∠AME=∠CNH=90°,
    ∴Rt△EMA≌Rt△CNH(HL),
    ∴AM=NH,
    ∴AN=HM,
    ∵△ACN是等腰直角三角形,
    ∴AC= AN,即AN=AC,
    ∴AH=AM+HM=AF+AC.
    此题考查平行四边形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    15、①+2;②0、1;③原方程无解.
    【解析】
    (1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解. .
    【详解】
    解(1)原式=3-1-(1-)+-1
    =3-1-1++2-1
    =+2
    (2)
    解不等式①得,x≤1,
    解不等式②得,x<4,
    所以不等式组的解集是x≤1,
    所以不等式组的非负整数解是0、1.
    故答案为:0、1.
    (3)方程两边同乘(x+2)(x-2),
    得:(x-2)2=(x+2)2+16,
    整理解得x=-2.
    经检验x=-2是增根,
    故原方程无解.
    (1)本题考查实数的混合运算、解不等式组和解分式方程;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时要注意符号的变化.
    16、见解析
    【解析】
    由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.
    【详解】
    如图,①连接AB,AC,
    ②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,
    则P即为售票中心.
    此题考查了线段垂直平分线的性质.此题难度不大,注意掌握线段垂直平分线的作法.
    17、(1)(分,(分;(2)选择甲参加比赛更合适.
    【解析】
    (1)由平均数的公式计算即可;
    (2)先分别求出两位同学测试成绩的方差,再根据方差的意义求解即可.
    【详解】
    解:(1)(分,
    (分,
    (2),

    甲的方差小于乙的方差,
    选择甲参加比赛更合适.
    本题考查了方差与平均数.平均数是指在一组数据中所有数据之和再除以数据的个数.方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    18、(1)2;y轴;120(2)90°
    【解析】
    (1)由点A的坐标为(-2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;
    (2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.
    【详解】
    (1)∵点A的坐标为(-2,0),
    ∴△AOC沿x轴向右平移2个单位得到△OBD;
    ∴△AOC与△BOD关于y轴对称;
    ∵△AOC为等边三角形,
    ∴∠AOC=∠BOD=60°,
    ∴∠AOD=120°,
    ∴△AOC绕原点O顺时针旋转120°得到△DOB.
    (2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,
    ∴OA=OD,
    ∵∠AOC=∠BOD=60°,
    ∴∠DOC=60°,
    即OE为等腰△AOD的顶角的平分线,
    ∴OE垂直平分AD,
    ∴∠AEO=90°.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    先将二次根式化为最简,然后合并同类二次根式即可.
    【详解】
    解:原式=.
    故答案为:2.
    本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.
    20、3或2或.
    【解析】
    根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.
    【详解】
    ∵四边形ABCD是长方形,
    ∴∠D=90°,AB=CD=8,
    ∵CE=5,
    ∴DE=3,
    在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE==5;
    过E作EM⊥AB于M,过P作PQ⊥CD于Q,
    则AM=DE=3,
    若△PAE是等腰三角形,则有三种可能:
    当EP=EA时,AP=2DE=6,
    所以t==2;
    当AP=AE=5时,BP=8−5=3,
    所以t=3÷1=3;
    当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,
    则x2=(x−3)2+42,
    解得:x=,
    则t=(8−)÷1=,
    综上所述t=3或2或时,△PAE为等腰三角形.
    故答案为:3或2或.
    此题考查矩形的性质,等腰三角形的判定,解题关键在于利用勾股定理进行计算.
    21、2
    【解析】
    根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.
    【详解】
    解:=2,
    由最简二次根式与能合并成一项,得
    a-1=1.
    解得a=2.
    故答案为:2.
    本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.
    22、1
    【解析】
    作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
    ∵∠C=90°,AC=BC=6cm,
    ∴△ABC为直角三角形,
    ∴∠A=∠B=45°,
    ∴△APE和△PBD为等腰直角三角形,
    ∴PE=AE=AP=tcm,BD=PD,
    ∴CE=AC﹣AE=(6﹣t)cm,
    ∵四边形PECD为矩形,
    ∴PD=EC=(6﹣t)cm,
    ∴BD=(6﹣t)cm,
    ∴QD=BD﹣BQ=(6﹣1t)cm,
    在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
    在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
    ∵四边形QPCP′为菱形,
    ∴PQ=PC,
    ∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
    ∴t1=1,t1=6(舍去),
    ∴t的值为1.
    故答案为1.
    【点睛】
    此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
    23、1
    【解析】
    先求出每次延长后的面积,再发现规律即可求解.
    【详解】
    解:最初边长为1,面积1,
    延长一次为,面积5,
    再延长为51=5,面积52=25,
    下一次延长为5,面积53=125,
    以此类推,
    当N=4时,正方形A4B4C4D4的面积为:54=1.
    故答案为:1.
    此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)14;(2).
    【解析】
    (1)先化成最简二次根式,再合并即可;
    (2)先化简,再代入求出即可.
    【详解】
    (1)原式
    (2)

    本题考查了二次根式的混合运算和求值,能正确根据运算法则进行化简和计算是解此题的关键.
    25、(1)C;
    (2),;
    (3)x可能的整数值为0,-2,-4,-6.
    【解析】
    (1)根据真分式的定义,即可选出正确答案;
    (2)利用题中的方法把分子分别变形为和,然后写成带分式即可;
    (3)先把分式化为带分式,然后利用有理数的整除性求解.
    【详解】
    (1)A.分子的次数为2,分母的次数为1,所以错误;
    B. 分子的次数为1,分母的次数为1,故错误;
    C. 分子的次数为0,分母的次数为1,故正确;
    D. 分子的次数为2,分母的次数为2,故错误;
    所以选C;
    (2),

    (3)
    ∵该分式的值为整数,
    ∴ 的值为整数,
    所以x+3可取得整数值为±3,±1,
    x可能的整数值为0,-2,-4,-6.
    本题主要考查分式的性质,要结合分式的基本性质依照题目中的案例,会对分式进行适当的变形.(1)根据真分式的定义判断即可;(2)可借助平方差公式,先给x2减1再加1,将它凑成平方差公式x2-1=(x+1)(x-1);(3)需将假分式等量变形成带分式,然后对取整.
    26、(1)1,3;(2)8,1,1,平均数不能反映该班同学捐书册数的一般情况,,理由见解析.
    【解析】
    (1)根据:全班40名同学和共捐图书320册这两个相等关系,设捐献7册的人数为x,捐献8册的人数为y,就可以列出方程组解决.
    (2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.然后根据它们的意义判断.
    【详解】
    解:(1)设捐款7册的x人,捐款8册的y人,
    由题意可得:
    解得:
    答:捐款7册的1人,捐款8册的3人;
    (2)平均数为:320÷40=8,
    ∵40个数据的中间是第20,21个数据的平均数,
    ∴中位数为:(1+1)÷2=1,
    众数是1.
    因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.
    此题主要考查了二元一次方程组的应用以及众数、中位数的定义,根据题意得出正确等量关系式是解题关键.
    题号





    总分
    得分
    批阅人

    90
    85
    95
    90

    98
    82
    88
    92
    册数
    4
    5
    6
    7
    8
    50
    人数
    6
    8
    15
    2

    相关试卷

    2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    +浙江省湖州市德清县2022-2023学年九年级下学期期中数学试卷:

    这是一份+浙江省湖州市德清县2022-2023学年九年级下学期期中数学试卷,共28页。

    浙江省湖州市德清县2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份浙江省湖州市德清县2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map