终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年浙江省杭州市萧山区北干初级中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年浙江省杭州市萧山区北干初级中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】第1页
    2024-2025学年浙江省杭州市萧山区北干初级中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】第2页
    2024-2025学年浙江省杭州市萧山区北干初级中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年浙江省杭州市萧山区北干初级中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份2024-2025学年浙江省杭州市萧山区北干初级中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列函数中,y随x的增大而减少的函数是( )
    A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x
    2、(4分)如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,那么BB′的长为( )
    A.等于1mB.大于1mC.小于1mD.以上答案都不对
    3、(4分)我市四月份某一周每天的最高气温(单位:℃)统计如下:29,30,25,27,25,则这组数据的中位数与众数分别是( )
    A.25;25 B.29;25 C.27;25 D.28;25
    4、(4分)以下列长度的三条线段为边,能组成直角三角形的是( )
    A.6,7,8B.2,3,4C.3,4,6D.6,8,10
    5、(4分)以下列各组数为边长,不能构成直角三角形的是( )
    A.5,12,13B.1,2,C.1,,2D.4,5,6
    6、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为( )
    A.3cmB.2cmC.1cmD.4.5cm
    7、(4分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,如图是购买甲、乙两家商场该商品的实际金额、(元)与原价(元)的函数图象,下列说法正确的是( )
    A.当时,选甲更省钱B.当时,甲、乙实际金额一样
    C.当时,选乙更省钱D.当时,选甲更省钱
    8、(4分)如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是( )
    A.∠ABC=90°B.AC=BDC.∠OBC=∠OCBD.AO⊥BD
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
    10、(4分)如右图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为 .
    11、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
    12、(4分)正方形的边长为2,点是对角线上一点,和是直角三角形.则______.
    13、(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
    (1)当﹣2<x≤3时,求y的取值范围;
    (2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
    15、(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:
    说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.
    (1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;
    (2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?
    16、(8分)阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示.设步道的宽为a(m).
    (1)求步道的宽.
    (2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.己知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2, 且区域丙为正方形,求塑胶跑道的总面积.
    17、(10分)已知一次函数y=kx﹣4,当x=1时,y=﹣1.
    (1)求此一次函数的解析式;
    (1)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.
    18、(10分)(1)计算:.
    (2)计算:.
    (3)先化简,再求值:,其中满足.
    (4)解方程:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)请你写出一个一次函数,使它经过二、三、四象限_____.
    20、(4分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为______.
    21、(4分)某工厂原计划在规定时间内生产12000个零件,实际每天比原计划多生产100个零件,结果比规定时间节省了.若设原计划每天生产x个零件,则根据题意可列方程为_____.
    22、(4分)若一元二次方程的两个根分别是矩形的边长,则矩形对角线长为______.
    23、(4分)已知,菱形中,、分别是、上的点,且,,则__________度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.
    根据图表中提供的信息,回答下列问题:
    (1)女生身高在B组的有________人;
    (2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);
    (3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.
    25、(10分)为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h) ,统计结果如下:
    9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
    7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
    在对这些数据整理后,绘制了如下的统计图表:
    睡眠时间分组统计表 睡眠时间分布情况
    请根据以上信息,解答下列问题:
    (1) m = , n = , a = , b = ;
    (2)抽取的这 40 名学生平均每天睡眠时间的中位数落在 组(填组别) ;
    (3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.
    26、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣1,1),C(﹣1,3).
    (1)将△ABC先向下平移6个单位长度,再向右平移5个单位长度,得到△A1B1C1,画出△A1B1C1,并写出点A的对应点A1的坐标;
    (1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,画出△A1B1C1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:一次函数的图象有两种情况: ①当k>0时,函数的值随x的值增大而增大;②当k<0时,函数的的值随x的值增大而减小.
    ∵函数y随x的增大而减少,∴k<0, 符合条件的只有选项C,故答案选C.
    考点:一次函数的图象及性质.
    2、C
    【解析】
    由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
    【详解】
    在直角三角形AOB中,
    ∵OA=2,OB=7
    ∴AB=(m),
    由题意可知AB=A′B′=(m),
    又∵OA′=4,根据勾股定理得:OB′=(m),
    ∴BB′=7﹣<1.
    故选C.
    本题考查了勾股定理的应用,属于基础题,解答本题的关键是掌握勾股定理的表达式.
    3、C
    【解析】25出现了2次,出现的次数最多,
    则众数是25;
    把这组数据从小到大排列25,25,27,29,30,最中间的数是27,
    则中位数是27;
    故选C.
    4、D
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;
    B、∵22+32≠42,∴不能构成直角三角形,故本选项错误;
    C、∵32+42≠62,∴不能构成直角三角形,故本选项错误;
    D、∵62+82=102,∴能构成直角三角形,故本选项正确.
    故选:D.
    本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    5、D
    【解析】
    【分析】根据勾股定理逆定理进行判断即可.
    【详解】因为,
    A. 52+122=132 B. 12+22= )2 C. 12+=22 D. 42+52≠62
    所以,只有选项D不能构成直角三角形.
    故选:D
    【点睛】本题考核知识点:勾股定理逆定理.解题关键点:能运用勾股定理逆定理.
    6、A
    【解析】
    如图,过点D作DE⊥AB于E,则点D到AB的距离为DE的长,根据已知条件易得DC=1. 利用角平分线性质可得到DE=DC=1。
    【详解】
    解:如图,过点D作DE⊥AB于E,
    ∵BD:DC=2:1,BC=9,
    ∵AD平分∠BAC,∠C=90°,
    ∴DE=DC=1.
    故选:A.
    本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,要注意DC的求法.
    7、D
    【解析】
    根据函数图象和图象中的数据可知原价 时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当 时函数在上方,花费较贵,故甲商场较划算
    【详解】
    据函数图象和图象中的数据可知原价 时,函数在上方,花费较贵,故乙商场较划算;当x=600时==480,甲乙商场花费一样;当 时函数在上方,花费较贵,故甲商场较划算
    A. 当时,选乙更省钱,故A选项错误;
    B. 当时,选乙更省钱,故B选项错误;
    C. 当时,甲、乙实际金额一样,故C选项错误;
    D. 当时,选甲更省钱,故D选项正确;
    故答案为:D
    本题考查了一次函数与方案选择问题,能够正确看懂函数图像,进行选择方案是解题的关键.
    8、D
    【解析】
    依据矩形的定义和性质解答即可.
    【详解】
    ∵ABCD为矩形,
    ∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;
    ∴OB=OC,
    ∴∠OBC=∠OCB,故C正确,与要求不符.
    当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.
    故选:D.
    本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、150km/h
    【解析】
    假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
    【详解】
    解:设快车的速度为a(km/h),慢车的速度为b(km/h),
    ∴4(a+b)=900,
    ∵慢车到达甲地的时间为12小时,
    ∴12b=900,
    b=75,
    ∴4(a+75)=900,
    解得:a=150;
    ∴快车的速度为150km/h.
    故答案为:150km/h.
    此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
    10、
    【解析】
    试题分析:如图,将正方体的三个侧面展开,连结AB,则AB最短,.
    考点:1.最短距离2.正方体的展开图
    11、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    解:∵S甲2=0.18,S乙2=0.32,
    ∴S甲2<S乙2,
    ∴身高较整齐的球队是甲;
    故答案为:甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、或.
    【解析】
    根据勾股定理得到BD=AC=,根据已知条件得到当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,求得DE=BD=,当点E与点B重合时,△EAD、△ECD是等腰直角三角形,得到DE=BD=.
    【详解】
    解:∵正方形ABCD的边长为2,
    ∴BD=AC=,
    ∵点E是对角线BD上一点,△EAD、△ECD是直角三角形,
    ∴当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,
    ∴DE=BD=,
    当点E与点B重合时,△EAD、△ECD是等腰直角三角形,
    ∴DE=BD=,
    故答案为:或.
    本题考查了正方形的性质,等腰直角三角形的判定和性质,分类讨论是解题的关键.
    13、15.6
    【解析】
    试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,
    最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),
    则这六个整点时气温的中位数是15.6℃.
    考点:折线统计图;中位数
    三、解答题(本大题共5个小题,共48分)
    14、 (1) ﹣4≤y<1;(2)点P的坐标为(2,﹣2) .
    【解析】
    利用待定系数法求一次函数解析式得出即可;
    (1)利用一次函数增减性得出即可.
    (2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.
    【详解】
    设解析式为:y=kx+b,
    将(1,0),(0,2)代入得:,
    解得:,
    ∴这个函数的解析式为:y=﹣2x+2;
    (1)把x=﹣2代入y=﹣2x+2得,y=1,
    把x=3代入y=﹣2x+2得,y=﹣4,
    ∴y的取值范围是﹣4≤y<1.
    (2)∵点P(m,n)在该函数的图象上,
    ∴n=﹣2m+2,
    ∵m﹣n=4,
    ∴m﹣(﹣2m+2)=4,
    解得m=2,n=﹣2,
    ∴点P的坐标为(2,﹣2).
    考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质
    15、(1)y= ;(2)40吨.
    【解析】
    (1)由水费=自来水费+污水处理,分段得出y与x的函数关系式;
    (2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即可.
    【详解】
    解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则
    ①当用水量17吨及以下时,y=(2.2+0.8)x=3x;
    ②当17<x≤30时,y=17×2.2+4.2(x−17)+0.8x=5x−34;
    ③当x>30时,y=17×2.2+13×4.2+6(x−30)+0.8x=6.8x−1.
    ∴y= ;
    (2)当用水量为30吨时,水费为:6.8×30−1=116元,9200×2%=184元,
    ∵116<184,
    ∴小王家七月份的用水量超过30吨,
    设小王家7月份用水量为x吨,
    由题意得:6.8x−1≤184,
    解得:x≤40,
    ∴小王家七月份最多用水40吨.
    本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.
    16、(1)3.1m (2)199m2
    【解析】
    (1)步道宽度为a, 则正方形休闲广场的边长为7a, 根据两条步道总面积等于休闲广场面积列方程求解即可.其中注意两条步道总面积要减去重叠部分的小正方形面积.
    (2)根据空地的长度和宽度,道路和塑胶的宽度以及丙的边长,计算出甲、乙区域长之差,因两区域的宽度相等,根据面积之差等于长度之差乘以宽度,求得宽度,即正方形丙的边长,塑胶跑道的总面积等于总长度乘以塑胶宽度,总长度等于空地长宽之和加丙的一边长,再减去有两次重复相加的塑胶宽度.
    【详解】
    (1)解:由题意,得100a+80a-a2=(7a)2 ,
    化简,得a2=3.1a,
    ∵a>0,
    ∴a=3.1.
    答:步道的宽为3.1 m.
    (2)解:如图,
    由题意,得AB-DE=100-80+1=21(m),
    ∴BC=EF==21(m).
    ∴塑胶跑道的总面积为1×(100+80+21-2)=199(m2).
    本题考查了一元二次方程的实际应用,在求相交跑道或小路面积时一定不能忽视重叠的部分,正确理解题意是解题的关键,
    17、(1)y=x﹣4;(1)(1,0)
    【解析】
    (1)根据待定系数法求出函数的解析式;
    (1)利用一次函数的平移的性质:上加下减,左加右减进行变形即可.
    【详解】
    (1)把x=1,y=-1代入y=kx-4可得
    1k-4=-1
    解得k=1
    即一次函数的解析式为y=x-4
    (1)根据一次函数的平移的性质,可得y=x-4+3=x-1
    即平移后的一次函数的解析式为y=x-1
    因为与x轴的交点y=0
    可得x=1
    所以与x轴的交点坐标为(1,0).
    此题主要考查了一次函数的图像与性质,关键是利用待定系数法求出函数的解析式.
    18、(1);(2);(3),;(4)
    【解析】
    (1)(2)根据二次根式的乘法和加减法可以解答本题;
    (3)根据分式的加减法和除法可以化简题目中的式子,然后将整体代入求值即可解答本题;
    (4)根据解分式方程的方法,把分式方程化为整式方程,可以解答本题,注意验根.
    【详解】
    解:(1)原式=
    =;
    (2)原式=
    =;
    (3)原式=


    =,
    ∵,
    ∴,
    ∴原式=
    =;
    (4)去分母,得,,
    去括号,得,,
    移项,得,,
    合并同类项,得,,
    系数化为1,得,,
    检验:当时,,
    ∴是原方程的解.
    本题考查了二次根式的混合运算、分式的化简求值以及解分式方程,解答本题的关键是明确它们各自的解答方法,注意分式方程要检验.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、答案不唯一:如y=﹣x﹣1.
    【解析】
    根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.
    【详解】
    ∵图象经过第二、三、四象限,∴如图所示.
    设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.
    故答案为:答案不唯一:如y=﹣x﹣1.
    本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.
    20、4
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形



    即两条对角线互相垂直,
    ∴这个四边形是菱形,

    故答案为
    21、-
    【解析】
    设原计划每天生产x个零件,则根据时间差关系可列出方程.
    【详解】
    设原计划每天生产x个零件,根据结果比规定时间节省了.
    可得 -
    故答案为: -
    理解工作问题,从时间关系列出方程.
    22、1
    【解析】
    利用因式分解法先求出方程的两个根,再利用勾股定理进行求解即可.
    【详解】
    方程x2-14x+48=0,即(x-6)(x-8)=0,
    则x-6=0或x-8=0,
    解得:x1=6,x2=8,
    则矩形的对角线长是:=1,
    故答案为:1.
    本题考查了矩形的性质,勾股定理,解一元二次方程等知识,熟练掌握相关知识是解题的关键.
    23、
    【解析】
    先连接AC,证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后运用三角形外角性质,求出∠CEF的度数.
    【详解】
    如图,连接AC,
    在菱形ABCD中,AB=BC,
    ∵∠B=60°,
    ∴△ABC是等边三角形,
    ∴AB=AC,
    ∵∠BAE+∠CAE=∠BAC=60°,
    ∠CAF+∠EAC=∠EAF=60°,
    ∴∠BAE=∠CAF,
    ∵∠B=∠ACF=60°,
    在△ABE和△ACF中,
    ∠B=∠ACF,AB=AC,∠BAE=∠CAF,
    ∴△ABE≌△ACF(ASA),
    ∴AE=AF,
    又∵∠EAF=60°,
    ∴△AEF是等边三角形,
    ∴∠AEF=60°,
    由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
    ∴60°+∠CEF=60°+23°,
    解得∠CEF=23°.
    故答案为23°.
    本题考查了菱形的性质和全等三角形的判定,熟练掌握全等三角形的判定方法,结合等边三角形性质和外角定义是解决本题的关键因素.
    二、解答题(本大题共3个小题,共30分)
    24、(1)12;(2)16;C;(3) 541人.
    【解析】
    先计算出B组所占百分之再求即可
    将位于这一小组内的频数相加即可求得结果;
    分别计算男、女生的人数,相加即可得解.
    【详解】
    解:(1)女生身高在B组的人数有40×(1−30%−20%−15%−5%)=12人;
    (2) 在样本中,身高在150⩽x

    相关试卷

    2024-2025学年浙江杭州市风帆中学九上数学开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年浙江杭州市风帆中学九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州市萧山区北干初级中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案:

    这是一份浙江省杭州市萧山区北干初级中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共8页。试卷主要包含了抛物线可由抛物线如何平移得到的,二次函数y=+2的顶点是,下列是一元二次方程的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map