2024-2025学年浙江省宁波市鄞州实验中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开这是一份2024-2025学年浙江省宁波市鄞州实验中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是( )
A.对角线互相平分B.对角线互相垂直
C.对角线相等D.对角线平分一组对角
2、(4分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( )
A.10组B.9组C.8组D.7组
3、(4分)直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
A.(-4,0)B.(-1,0)C.(0,2)D.(2,0)
4、(4分)在、、、、中,分式的个数是( )
A.2B.3C.4D.5
5、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线.若∠A=20°,则∠BDC=( )
A.30°B.40°C.45°D.60°
6、(4分)如图,将ABC绕点A顺时针旋转70°后,得到ADE,下列说法正确的是( )
A.点B的对应点是点EB.∠CAD=70°C.AB=DED.∠B=∠D
7、(4分)一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是( )
A.B.C.D.
8、(4分)如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分))如图,Rt△ABC中,C= 90,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为 .
10、(4分)如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.
11、(4分)使有意义的x取值范围是______.
12、(4分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是_____.
13、(4分)若关于x的二次方程(m+1)x2+5x+m2-3m=4的常数项为0,则m的值为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校随机抽取本校部分同学,调查同学了解母亲生日日期的情况,分“知道、不知道、记不清”三种.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.
请你要根据图中提供的信息,解答下列问题:
(1)求本次被调查学生的人数,并补全条形统计图;
(2)在图①中,求出“不知道”部分所对应的圆心角的度数;
(3)若全校共有1440名学生,请你估计这所学校有多少名学生知道母亲的生日?
15、(8分)已知一次函数 与正比例函数 都经过点 , 的图像与轴交于点 ,且 .
(1)求与 的解析式;
(2)求⊿的面积.
16、(8分)如图,在四边形中,、、、分别是、、、的中点,.求证:.
17、(10分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.
(1)求证:BE⊥CF;
(2)若AB=a,CF=b,写出求BE的长的思路.
18、(10分)某旅游风景区,门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人部分打b折.设团体游客人,门票费用为y元,y与x之间的函数关系如图所示.
(1)填空:a=_______;b=_________.
(2)请求出:当x>10时,与之间的函数关系式;
(3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A旅游团有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xy中,我们把横纵坐标都是整数的点叫做整点,过点(1,2)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在△AOB内部(不包括边界)的整点的坐标是________.
20、(4分)若分式的值为0,则x的值是_____.
21、(4分)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.
22、(4分)在菱形中,,若菱形的面积是 ,则=____________
23、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)中,AD是的平分线,,垂足为E,作,交直线AE于点设,.
若,,依题意补全图1,并直接写出的度数;
如图2,若是钝角,求的度数用含,的式子表示;
如图3,若,直接写出的度数用含,的式子表示.
25、(10分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON;
(2)若正方形ABCD的边长为6,OE=EM,求MN的长.
26、(12分)(1)解不等式组 (2)解方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由矩形的对角线性质和平行四边形的对角线性质即可得出结论.
【详解】
解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,但不一定相等,
∴矩形具备而平行四边形不一定具备的是对角线相等.
故选C.
本题考查了矩形的性质、平行四边形的性质;熟记矩形和平行四边形的性质是解题的关键.
2、A
【解析】
在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.
故选A.
此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
3、D
【解析】
试题分析:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,则x=2,即图像与x轴的交点坐标为(2,0).
考点:一次函数的性质
4、B
【解析】
形如(A、B是整式,B中含有字母)的式子叫做分式.其中A叫做分式的分子,B叫做分式的分母.根据分式的定义即可判断.
【详解】
在、、、、中, 、、是分式,答案选B.
判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式.无需考虑该分式是否有意义,即分母是否为零.
5、B
【解析】
根据直角三角形斜边上的中线,可得CD=AD,所以∠A=∠DCA=20°,再三角形外角性质即可得到∠BDC.
【详解】
∵∠ACB=90°,CD是斜边AB上的中线,
∴BD=CD=AD.
∴∠A=∠DCA=20°,∴∠BDC=∠A+∠DCA=20°+20°=40°.
故选B.
本题考查直角三角形斜边上的中线的性质,熟记性质是解题的关键.
6、D
【解析】
根据旋转的性质逐项判断即得答案.
【详解】
解:因为将△ABC绕点A顺时针旋转70°后,得到△ADE,所以:
A、点B的对应点是点D,不是点E,故本选项说法错误,不符合题意;
B、∠CAD不是旋转角,不等于70°,故本选项说法错误,不符合题意;
C、AB=AD≠DE,故本选项说法错误,不符合题意;
D、∠B=∠D,故本选项说法正确,符合题意.
故选:D.
本题考查了旋转的性质,属于基础题型,熟练掌握旋转的性质是关键.
7、C
【解析】
根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.
【详解】
解:A、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;
B、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;
C、∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴一次函数y=-kx+k的图象经过一、二、四象限,故本选项正确;
D、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误.
故选C.
本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.
8、D
【解析】
由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.
【详解】
∵▱ABCD的对角线AC,BD相交于点O,
∴OA=OC,AD=BC,AB=CD=5,
∵AE=EB,OE=3,
∴BC=2OE=6,
∴▱ABCD的周长=2×(AB+BC)=1.
故选:D.
此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.
【解析】
正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.
【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,
∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.
∴∠AOM+∠BOF=90°.
又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.
在△AOM和△BOF中,
∵∠AMO=∠OFB=90°,∠OAM=∠BOF, OA=OB,
∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.
又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.
∴OF=CF.∴△OCF为等腰直角三角形.
∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.
∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.
10、1.
【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠D=50°,AD∥BC,
由作图可知,BE平分∠ABC,
∴∠EBC=∠ABC=1°,
∴∠AEB=∠EBC=1°,
故答案为1.
本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
11、x≥1
【解析】
试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
由题意得,.
考点:二次根式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
12、y=-2x+1
【解析】
根据一次函数图象平移的规律即可得出结论.
【详解】
解:正比例函数y=-2x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-2x+1,
故答案为y=-2x+1.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
13、1
【解析】
根据方程常数项为0,求出m的值即可.
【详解】
解:方程整理得:(m+1)x2+5x+m2-3m-1=0,
由常数项为0,得到m2-3m-1=0,即(m-1)(m+1)=0,
解得:m=1或m=-1,
当m=-1时,方程为5x=0,不合题意,舍去,
则m的值为1.
故答案为:1.
本题考查了一元二次方程的一般形式,以及一元二次方程的定义,将方程化为一般形式是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)本次被调查学生的人数为90;补条形图见解析;(2)所对应的圆心角的度数为40°;(3)估计这所学校1440名学生中,知道母亲生日的人数为800人.
【解析】
(1)根据图象数据求总人数,即可求出“知道”的学生数,即可补全条形图;
(2)根据记不清在扇形统计图中所占120°,在条形图中为30,得出总人数,进而求出“不知道”部分所对应的圆心角的度数;
(3)用总人乘以知道母亲的生日的在样本中所占的百分比即可求得学生人数.
【详解】
(1)由“记不清”人数30,扇形统计图圆心角
∴本次被调查学生的人数为90
∴“知道”人数为
补条形图
(2)本次被调查“不知道”人数为10,
所对应的圆心角的度数为
(3)估计这所学校1440名学生中,
知道母亲生日的人数为:(人)
此题考查扇形统计图,用样本估计总体,条形统计图,解题关键在于看到图中数据
15、(1)或;⊿的面积为15个平方单位.
【解析】
分析:本题的⑴求正比例函数 解析式可通过来解决.而要求的解析式则还需要一个点的坐标,这个通过来解决;⑵问通过结合⑴问 的坐标来确定⊿解底边长和高长,利用三角形的面积公式求解.
详解:⑴.∵正比例函数过点;
∴ 解得:
∴
根据勾股定理可求
设点的坐标为.
又∵ ,则 解得或
∴点的坐标为或
又∵一次函数同时也过点
∴ 或 ;分别解得 或
∴或
⑵.根据⑴的解答画出示意图,过作轴
∵,的坐标为或
∴
∴⊿= ⊿=
∴综上所解,⊿的面积为15个平方单位.
点睛:本题要注意两点:其一.所需线段的长度可以由坐标直接求出,也可能借助于勾股定理计算;其二.要注意根据绝对值的意义进行分类讨论,也就是可能有多解.
16、见解析.
【解析】
连接,,根据是的中点,及、、分别是、、的中点可以证明
【详解】
解:证明:连接,.
∵是的中点,.
∴.
∵、、分别是、、的中点,
∴,,
∴.
本题主要考查了三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
17、 (1)见解析;(2)见解析.
【解析】
【分析】(1)由平行四边形性质得AB∥CD, 可得∠ABC+∠BCD=180°,又BE,CF分别是∠ABC,∠BCD的平分线,所以∠EBC+∠FCB=90°,可得∠BGC=90°;
(2)作EH∥AB交BC于点H,连接AH交BE于点P.证四边形ABHE是菱形,可知AH,BE互相垂直平分,在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠ABC+∠BCD=180°.
∵BE,CF分别是∠ABC,∠BCD的平分线,
∴∠EBC=∠ABC,∠FCB=∠BCD.
∴∠EBC+∠FCB=90°.
∴∠BGC=90°.
即BE⊥CF.
(2)求解思路如下:
a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.
b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;
c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=;
d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.
【点睛】本题考核知识点:平行四边形,菱形. 解题关键点:熟记平行四边形和菱形的性质和判定.
18、 (1)80;8(2)y=64x+160;(3)40人
【解析】
分析:(1)根据函数图象可以求得a、b的值;
(2)根据函数图象可以求得当x>10时,y与x之间的函数关系式;
(3)根据(2)中的解析式可以求得A旅游团的人数.
详解:(1)由图象可知,
a=800÷10=80,
b=×10=8,
故答案为:80,8;
(2)当x>10时,设y与x之间的函数关系式是y=kx+m,
则,
解得,,
即当x>10时,y与x之间的函数关系式是y=64x+160;
(3)∵2720>800,
∴将y=2720代入y=64x+160,得
2720=64x+160,
解得,x=40,
即A旅游团有40人.
点睛:本题考查一次函数的应用,揭帖关键是明确题意,找出所求问题需要的条件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(1,1)和(2,1).
【解析】
设直线AB的解析式为,由直线AB上一点的坐标利用待定系数法即可求出b值,画出图形,即可得出结论.
【详解】
解:设直线AB的解析式为,
∵点(1,2)在直线AB上,
∴,解得:b=,
∴直线AB的解析式为.
∴点A(5,0),点B(0,).
画出图形,如图所示:
∴在△AOB内部(不包括边界)的整点的坐标是:(1,1)和(2,1).
本题考查了两条直线平行问题以及待定系数法求函数解析式,解题的关键是画出图形,利用数形结合解决问题.本题属于基础题,难度不大,解决该题目时,由点的坐标利用待定系数法求出函数解析式是关键.
20、-2
【解析】
根据分子等于零且分母不等于零列式求解即可.
【详解】
解:由分式的值为2,得
x+2=2且x﹣2≠2.
解得x=﹣2,
故答案为:﹣2.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
21、4
【解析】
根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S的一半,这样就可以把S1和S3用S来表示,从而计算出S的
【详解】
解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF//DC//GN,
设AC与FH交于P,CD与HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分别是BC、CE的中点,
故答案为:4.
本题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=ah.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
22、
【解析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.
【详解】
解:如图,
∵四边形ABCD是菱形
∴AO=CO=6cm,BO=DO,AC⊥BD
∵S菱形ABCD=×AC×BD=96
∴BD=16cm
∴BO=DO=8cm
∴AB==10cm
故答案为10cm
本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.
23、 (-2,2)
【解析】
由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.
【详解】
解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,
∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,
∴A′的坐标为(-2,2).
故答案为:(-2,2).
本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
二、解答题(本大题共3个小题,共30分)
24、(1)补图见解析,;(2) ;(3) .
【解析】
(1)先根据三角形内角和定理求出∠BAC和∠CAE,根据角平分线定义求出∠CAD,即可求出答案;
(2)先根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据三角形外角性质求出∠ADC,根据三角形内角和定理求出∠DAE,根据平行线的性质求出即可;
(3)求出∠DAE度数,根据平行线的性质求出即可.
【详解】
解:如图1,
,,
,
是的平分线,
,
,
,
,
,
,
,
;
如图2,
中,,
.
,
是的平分线,
,
,
,
,
,
,
,
;
如图3,
中,,
,
,
是的平分线,
,
,
,
,
,
.
本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.
25、(1)见解析;(2)MN.
【解析】
(1)证△OAM≌△OBN即可得;
(2)作OH⊥AD,由正方形的边长为6且E为OM的中点知OH=HA=3、HM=6,再根据勾股定理得OM=,由勾股定理即可求出MN的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为6,
∴OH=HA=3,
∵E为OM的中点,
∴HM=6,
则OM=,
∴MN=.
本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.
26、(1) (2)
【解析】
(1)先分别对每个不等式求解,然后求其解集的公共部分即可.(2)按照去分母、去括号、移项、合并同类项、系数化为1,检验的步骤即可解答.
【详解】
解:(1)
由①得
由②得
∴
(2)
经检验是原方程的根
本题考查了不等式组和分式方程的解法,对于不等式组要先分别对每个不等式求解,然后求其解集的公共部分;对分式方程的解法按照去分母、去括号、移项、合并同类项、系数化为1,检验的步骤进行,其中检验是易错点
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年山东省威海市实验中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京四中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。