2024-2025学年浙江省温州市各学校九上数学开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列关于向量的等式中,不正确的是( )
A.B.C.D.
2、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
3、(4分)已知点,,都在直线上,则,,的大小关系是( )
A.B.C.D.
4、(4分)一个多边形的内角和是外角和的2倍,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
5、(4分)某药品经过两次降价,每瓶零售价由元降为元。已知两次降价的百分率相同,每次降价的百分率为 ,根据题意列方程得( )
A.B.
C.D.
6、(4分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等.以上四个条件中可以判定四边形ABCD是平行四边形的有( )
A.1个
B.2个
C.3个
D.4个
7、(4分)函数y=的自变量x的取值范围是( )
A.x≥0且x≠2B.x≥0C.x≠2D.x>2
8、(4分)若点在第四象限,则的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算=________________.
10、(4分)无论x取何值,分式总有意义,则m的取值范围是______.
11、(4分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式: ①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_______.
12、(4分)如图,的周长为26,点,都在边上,的平分线垂直于,垂足为点,的平分线垂直于,垂足为点,若,则的长为______.
13、(4分)若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:直线y=2x+6、直线y=﹣2x﹣4与y轴的交点分别为A点、B点.
(1)请直接写出点A、B的坐标;
(2)若两直线相交于点C,试求△ABC的面积.
15、(8分)已知:一次函数y=(3﹣m)x+m﹣1.
(1)若一次函数的图象过原点,求实数m的值;
(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.
16、(8分)如图,于点,于点,与相交于点,连接线段,恰好平分.
求证:.
17、(10分) “五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)求出AB段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
18、(10分)把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,联结DF,点M,N分别为DF,EF的中点,联结MA,MN.
(1)如图1,点E,F分别在正方形的边CB,AB上,请判断MA,MN的数量关系和位置关系,直接
写出结论;
(2)如图2,点E,F分别在正方形的边CB,AB的延长线上,其他条件不变,那么你在(1)中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
图1 图2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.
20、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
21、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为_____.
22、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
23、(4分)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.
25、(10分)按指定的方法解下列一元二次方程:
(1)(配方法) (2)(公式法)
26、(12分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平面向量的加法法则判定即可.
【详解】
A、,正确,本选项不符合题意;
B、,错误,本选项符合题意;
C、,正确,本选项不符合题意;
D、,正确,本选项不符合题意;
故选B.
本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
3、C
【解析】
中,,所以y随x的增大而减小,依据三点的x值的大小即可确定y值的大小关系.
【详解】
解:
y随x的增大而减小
又
故答案为:C
本题考查了一次函数的性质,正确理解并应用其性质是解题的关键.
4、C
【解析】
此题可以利用多边形的外角和和内角和定理求解.
【详解】
解:设所求多边形边数为n,由题意得
(n﹣2)•180°=310°×2
解得n=1.
则这个多边形是六边形.
故选C.
本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.
5、D
【解析】
设每次降价的百分率为x,根据该药品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,此题得解.
【详解】
解:设每次降价的百分率为x,
根据题意得:168(1-x)2=1.
故选:D.
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
6、C
【解析】
根据平行四边形的判定定理可知①②③可以判定四边形ABCD是平行四边形.
故选C.
7、A
【解析】
由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.
【考点】本题考查函数自变量的取值范围.
8、D
【解析】
根据第四象限内点的坐标特征为(+,-)列不等式求解即可.
【详解】
由题意得
2m-1<0,
∴.
故选D.
本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
直接利用二次根式的乘法运算法则计算得出答案.
【详解】
原式=,
故答案为:.
本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.
10、m>1
【解析】
根据分式有意义的条件列出不等式,解不等式得到答案.
【详解】
解:当x2+2x+m≠0时,总有意义,
∴△=4-4m<0,
解得,m>1
故答案为:m>1.
本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.
11、
【解析】
从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,
其中只有①②、①③和③④可以判断四边形ABCD是平行四边形,所以能够得出这个四边形ABCD是平行四边形的概率是 .
点睛:本题用到的知识点:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
12、3
【解析】
首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
【详解】
由题知为的垂直平分线,
,由题意知为的垂直平分线,.
,且,.
..
.又点,分别为,的中点,
.
本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.
13、1+2
【解析】
先估算出的范围,再求出a,b的值,代入即可.
【详解】
解:∵16<23<25,
∴1<<5,
∴3<﹣1<1.
∴a=3,b=﹣1.
∴原式=32+2(﹣1)=9+2﹣8=1+2.
故答案为:1+2.
本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)点A的坐标为(0,6)、B的坐标(0,﹣4);(2)△ABC的面积为12.1.
【解析】
(1)根据y轴的点的坐标特征可求点A、B的坐标;
(2)联立方程组求得交点C的坐标,再根据三角形面积公式可求△ABC的面积.
【详解】
(1)令x=0,则y=6、y=﹣4
则点A的坐标为(0,6)、B的坐标(0,﹣4);
(2)联立方程组可得 ,
解得 ,即C点坐标为(-2.1,1)
故△ABC的面积为(6+4)×2.1÷2=12.1
本题考查了两直线相交的问题,直线与坐标轴的交点坐标的求解方法,联立两直线解析式求交点是常用的方法之一,要熟练掌握.
15、(1)m=1;(2)3<m<1
【解析】
(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;
(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.
【详解】
(1)∵一次函数y=(3﹣m)x+m﹣1的图象过原点,
∴,
解得:m=1.
(2)∵一次函数y=(3﹣m)x+m﹣1的图象经过第二、三、四象限,
∴,
解得:3<m<1.
本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.
16、见解析.
【解析】
由角平分线的性质得出OE=OD,证得△BOE≌△COD,即可得出结论.
【详解】
∵于点,于点,恰好平分
∴,
∵
∴
∴
本题考查了角平分线的性质、全等三角形的判定与性质等知识,熟练掌握角平分线的性质、证明三角形全等是解题的关键.
17、(1)30(2)y=80x﹣30(1.5≤x≤2.5);(3)他们出发2小时,离目的地还有40千米
【解析】
(1)先设函数解析式,再根据点坐标求解析式,带入数值求解即可(2)根据点坐标求AB段的函数解析式(3)根据题意将x=2带入AB段解析式中求值即可.
【详解】
解:(1)设OA段图象的函数表达式为y=kx.
∵当x=1.5时,y=90,
∴1.5k=90,
∴k=60.
∴y=60x(0≤x≤1.5),
∴当x=0.5时,y=60×0.5=30.
故他们出发半小时时,离家30千米;
(2)设AB段图象的函数表达式为y=k′x+b.
∵A(1.5,90),B(2.5,170)在AB上,
∴①1.5k′+b=90 ② 2.5k′+b=170
解得k′=80 b=-30
∴y=80x-30(1.5≤x≤2.5);
(3)∵当x=2时,y=80×2-30=130,
∴170-130=40.
故他们出发2小时时,离目的地还有40千米.
此题重点考察学生对一次函数的实际应用能力,利用待定系数法来确定一次函数的表达式是解题的关键.
18、(1)MA=MN,MA⊥MN;(2)成立,理由详见解析
【解析】
(1)解:连接DE,
∵四边形ABCD是正方形,
∴AD=CD=AB=BC,∠DAB=∠DCE=90°,
∵点M是DF的中点,
∴AM=DF.
∵△BEF是等腰直角三角形,
∴AF=CE,
在△ADF与△CDE中,,
∴△ADF≌△CDE(SAS),
∴DE=DF.
∵点M,N分别为DF,EF的中点,
∴MN是△EFD的中位线,
∴MN=DE,
∴AM=MN;
∵MN是△EFD的中位线,
∴MN∥DE,
∴∠FMN=∠FDE.
∵AM=MD,
∴∠MAD=∠ADM,
∵∠AMF是△ADM的外角,
∴∠AMF=2∠ADM.
∵△ADF≌△CDE,
∴∠ADM=∠CDE,
∴∠ADM+∠CDE+∠FDE=∠FMN+∠AMF=90°,
∴MA⊥MN.
∴MA=MN,MA⊥MN.
(2)成立.
理由:连接DE.
∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°.
在Rt△ADF中,
∵点M是DF的中点,
∴MA=DF=MD=MF,
∴∠1=∠1.
∵点N是EF的中点,
∴MN是△DEF的中位线,
∴MN=DE,MN∥DE.
∵△BEF是等腰直角三角形,
∴BF=BF,∠EBF=90°.
∵点E、F分别在正方形CB、AB的延长线上,
∴AB+BF=CB+BE,即AF=CE.
在△ADF与△CDE中,
∴△ADF≌△CDE,
∴DF=DE,∠1=∠2,
∴MA=MN,∠2=∠1.
∵∠2+∠4=∠ABC=90°,∠4=∠5,
∴∠1+∠5=90°,
∴∠6=180°﹣(∠1+∠5)=90°,
∴∠7=∠6=90°,MA⊥MN.
考点:四边形综合题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、甲
【解析】
根据根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。
20、x<1
【解析】
分析:
根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.
详解:
由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,
∵点A的坐标为(1,3),
∴不等式bx<ax+4的解集为:x<1.
故答案为x<1.
点睛:“知道不等式bx<ax+4的解集是函数图象中:直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围”是解答本题的关键.
21、﹣2<x<2
【解析】
先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x
﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.
【详解】
∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),
∴﹣4=﹣n﹣2,解得n=2,
∴P(2,﹣4),
又∵y=﹣x﹣2与x轴的交点是(﹣2,0),
∴关于x的不等式组的解集为
故答案为
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出
n的值,是解答本题的关键.
22、或
【解析】
根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
【详解】
解:如图:过点E作EM⊥BC,垂直为M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵点G、H分别是OB、OD的中点,
∴GH=BD=,
当四边形EGFH为矩形时,GH=EF=,
在Rt△EMF中,FM==,
易证△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案为:或.
考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.
23、AD∥BC(答案不唯一)
【解析】
根据两组对边分别平行的四边形是平行四边形可得添加的条件为.
【详解】
解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,
故答案为.
此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)
【解析】
(1)根据等角的余角相等证明即可;
(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.
【详解】
(1)证明: ∵CB=CE,
∴∠CBE=∠CEB,
∵∠ABC=∠CED=90°,
∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,
∴∠DEF=∠ABF.
(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,
∴△ANB≌△DME(AAS),
∴AN=DM,
∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,
∴△AFN≌△DFM(AAS),
∴AF=FD,即F为AD的中点;
(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,
∴BC=EC==6,
∵EC⊥BC,
∴∠BCE=∠ACD=90°,
∵AC=CD=10,
∴AD=10,
∴DF=AF=5,
∵∠MED=∠CEB=45°,
∴EM=MD=4,
在Rt△DFM中,FM==3,
∴EF=EM-FM=.
本题考查旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
25、(1),;(2),
【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;
(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.
【详解】
(1)
∴
解得,,;
(2)
在这里,,b=-2,
∴
解得,,
本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:
26、(1)16,17;(2)14;(3)2.
【解析】
(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;
(2)根据平均数的概念,将所有数的和除以10即可;
(3)用样本平均数估算总体的平均数.
【详解】
(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,
故答案为16,17;
(2)14,
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)200×14=2
答:该小区居民一周内使用共享单车的总次数为2次.
本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年浙江省杭州市景成实验学校数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年浙江省杭州市景成实验学校数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】: 这是一份2024-2025学年浙江省杭州市富阳区城区联考九上数学开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都七中育才学校九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年四川省成都七中育才学校九上数学开学联考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。