开学活动
搜索
    上传资料 赚现金

    2024-2025学年浙江省温州市六校数学九上开学联考试题【含答案】

    2024-2025学年浙江省温州市六校数学九上开学联考试题【含答案】第1页
    2024-2025学年浙江省温州市六校数学九上开学联考试题【含答案】第2页
    2024-2025学年浙江省温州市六校数学九上开学联考试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年浙江省温州市六校数学九上开学联考试题【含答案】

    展开

    这是一份2024-2025学年浙江省温州市六校数学九上开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)有11名同学参加100米赛跑,预赛成绩各不相同,要取前6名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这11名同学成绩的( )
    A.中位数B.平均数C.众数D.方差
    2、(4分)下列运算中正确的是( )
    A.B.C.D.
    3、(4分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==11,==15:s甲2=s丁2=1.6,s乙2=s丙2=6.1.则麦苗又高又整齐的是( )
    A.甲B.乙C.丙D.丁
    4、(4分)下列各组线段能构成直角三角形的一组是( )
    A.30,40,50B.7,12,13C.5,9,12D.3,4,6
    5、(4分)若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是
    A.-1B.0C.1D.2
    6、(4分)用反证法证明“在中,,则是锐角”,应先假设( )
    A.在中,一定是直角B.在中,是直角或钝角
    C.在中,是钝角D.在中,可能是锐角
    7、(4分)将矩形纸片按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形,若,则的长为( )
    A.B.C.D.
    8、(4分)将下列多项式分解因式,结果中不含因式x+1的是( )
    A.x2−1 B.x2−2x+1 C.x(x−2)+(x−2) D.x2+2x+1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
    10、(4分)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________
    11、(4分)如图,在△ABC中,∠BAC=60°,AD平分∠BAC,若AD=6,DE⊥AB,则DE的长为_____________.
    12、(4分)画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.
    13、(4分)已知y是x的一次函数,右表列出了部分对应值,则______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.
    (1)求直线BE的解析式;
    (2)求点D的坐标;
    15、(8分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,,米,米,米,米.
    (1)请你帮助管理人员计算出这个四边形对角线的长度;
    (2)请用你学过的知识帮助管理员计算出这块空地的面积.
    16、(8分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
    (1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
    17、(10分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.
    (1)甲、乙两种款型的T恤衫各进货多少件?
    (2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)
    18、(10分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:
    (1)请根据统计图填写下表:
    (2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析,你认为反映出什么问题?
    ①从平均数和方差相结合分析;
    ②从折线图上两名同学分数的走势上分析.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)因式分解:x2+6x=_____.
    20、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.
    21、(4分)如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
    22、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
    23、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:
    (1)补全条形统计图;
    (2)求这30名职工捐书本数的平均数、众数和中位数;
    (3)估计该单位750名职工共捐书多少本?
    25、(10分)如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
    26、(12分)(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)
    (探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
    (应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由于有11名同学参加预赛,要取前6名参加决赛,故应考虑中位数的大小.
    【详解】
    解:共有11名学生参加预赛,取前6名,所以小明需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第6名学生的成绩是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否进入决赛.
    故选A.
    本题考查了统计量的选择,解题的关键是学会运用中位数的意义解决实际问题.
    2、B
    【解析】
    根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.
    【详解】
    A. 不能合并,所以A选项错误;
    B. 原式=,所以B选项正确;
    C. 原式= ,所以C选项错误;
    D. 原式=3,所以D选项错误。
    故选B.
    此题考查二次根式的混合运算,掌握运算法则是解题关键
    3、D
    【解析】
    方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
    【详解】
    ∵=>=,
    ∴乙、丁的麦苗比甲、丙要高,
    ∵s甲2=s丁2<s乙2=s丙2,
    ∴甲、丁麦苗的长势比乙、丙的长势整齐,
    综上,麦苗又高又整齐的是丁,
    故选D.
    本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
    4、A
    【解析】
    试题分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
    解:A、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;
    B、∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
    C、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
    D、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;
    故选A.
    5、D
    【解析】
    联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.
    【详解】
    解:联立,
    解得:,
    ∵交点在第一象限,
    ∴,
    解得:a>1.
    故选D.
    本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.
    6、B
    【解析】
    假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.
    【详解】
    解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.
    故选:B.
    本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
    7、D
    【解析】
    解:∵折叠
    ∴∠DAF=∠FAC,AD=AO,BE=EO,
    ∵AECF是菱形
    ∴∠FAC=∠CAB,AOE=90°
    ∴∠DAF=∠FAC=∠CAB
    ∵DABC是矩形
    ∴∠DAB=90°,AD=BC
    ∴∠DAF+∠FAC+∠CAB=90°
    ∴∠DAF=∠FAC=∠CAB=30°
    ∴AE=2OE=2BE
    ∵AB=AE+BE=3
    ∴AE=2,BE=1
    ∴在Rt△AEO中,AO==AD
    ∴BC=
    故选D.
    8、B
    【解析】
    直接利用平方差公式以及完全平方公式分解因式,进而得出答案.
    【详解】
    A、x2-1=(x+1)(x-1),故此选项不合题意;
    B、x2-2x+1=(x-1)2,故此选项符合题意;
    C、x(x-2)+(x-2)=(x+1)(x-2),故此选项不合题意;
    D、x2+2x+1=(x+1)2,故此选项不合题意;
    故选B.
    此题主要考查了公式法以及提公因式法分解因式,熟练应用乘法公式是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、乙
    【解析】
    根据方差的定义,方差越小数据越稳定,即可得出答案.
    【详解】
    解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
    ∴S甲2>S乙2,
    ∴成绩比较稳定的是乙;
    故答案为:乙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    10、m<
    【解析】
    ∵y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,
    ∴(2m﹣1)<0,3﹣2m>0
    ∴解不等式得:m<,m<,
    ∴m的取值范围是m<.
    故答案为m<.
    11、1
    【解析】
    分析:根据角平分线的性质求出∠DAC=10°,根据直角三角形的性质得出CD的长度,最后根据角平分线的性质得出DE的长度.
    详解:∵∠BAC=60°,AD平分∠BAC, ∴∠DAC=10°, ∵AD=6, ∴CD=1,
    又∵DE⊥AB, ∴DE=DC=1.
    点睛:本题主要考查的是直角三角形的性质以及角平分线的性质,属于基础题型.合理利用角平分线的性质是解题的关键.
    12、640
    【解析】
    首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.
    【详解】
    解:设这个零件的实际长是xcm,根据题意得:

    解得:x=640,
    则这个零件的实际长是640cm.
    故答案为:640
    此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.
    13、1
    【解析】
    先设一次函数关系式:,根据表格中的数据代入函数关系式可得:,解得:,继而可求一次函数关系式,最后将x=0代入求解.
    【详解】
    设一次函数关系式:,
    根据表格中的数据代入函数关系式可得:,
    解得:,
    所以一次函数关系式是:
    将x=0,y=m代入可得:
    ,
    故答案为:1.
    本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)直线BE的解析式为y=x+2;(2)D(-3,).
    【解析】
    (1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;
    (2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.
    【详解】
    (1),令x=0,则y=2,
    令y=0,则,解得:x=-6,
    ∴A(-6,0),B(0,2),
    ∴OA=6,OB=2,
    ∴AB==4,
    ∵折叠,
    ∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,
    ∴∠ADE=90°,AD=AB-BD=2,
    设DE=EO=m,则AE=AO-OE=6-m,
    在Rt△ADE中,AE2=AD2+DE2,
    即(6-m)2=m2+(2)2,
    解得:m=2,
    ∴OE=2,
    ∴E(-2,0),
    设直线BE的解析式为:y=kx+b,
    把B、E坐标分别代入得:,
    解得:,
    ∴直线BE的解析式为y=x+2;
    (2)过点D作DM⊥AO,垂足为M,
    由(1)DE=2,AE=AO-OE=4,
    ∵S△ADE=,
    即,
    ∴DM=,
    ∴点D的纵坐标为,
    把y=代入,得

    解得:x=-3,
    ∴D(-3,).
    本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.
    15、(1)25米;(2)234米2
    【解析】
    (1)连接,利用勾股定理求出AC即可;
    (2)利用勾股定理的逆定理证明∠ADC=90°,计算两个直角三角形面积即可解决问题
    【详解】
    (1)连接.在中,由勾股定理得:
    (米).
    (2)在中,∵,
    ∴.
    ∴ (米2).
    本题考查勾股定理及其逆定理的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、(1)见解析;(2)周长为:11.
    【解析】
    (1)根据三角形的中位线的定理和平行四边形的判定即可解答;
    (2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.
    【详解】
    (1)证明:∵点E,F 分别是AB,AC 的中点,
    ∴EF 是△ABC 的中位线,∴EF∥BC 且EF=BC;
    又∵点H,G 分别是BD,CD 的中点,∴HG 是△BCD 的中位线,∴HG∥BC
    且HG=BC;
    ∴EF∥HG 且EF=HG,∴四边形EFGH 是平行四边形.
    (2)∵点E,H 分别是AB,BD 的中点,∴EH 是△ABD 的中位线,∴EH=AD=3;
    ∵∠BDC=90°,∴△BCD 是直角三角形;
    在Rt△BCD 中,CD=3,BD=4,∴由勾股定理得:BC=5;
    ∵HG=BC,∴HG=;
    由(1)知,四边形EFGH 是平行四边形,∴周长为2EH+2HG=11.
    本题考查了三角形中位线定理, 勾股定理,掌握三角形中位线定理, 勾股定理是解决问题的关键.
    17、(1)甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;(2)7520元.
    【解析】
    (1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;
    (2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.
    【详解】
    解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,
    依题意得: ,
    解得:x=40,
    经检验,x=40是原方程的解,且符合题意,
    2x=1.
    答:甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;
    (2)甲进货价:10400÷1=130(元/件),乙进货价:6400÷40=160(元/件),
    130×(1+60%)×1+160×(1+60%)×(40÷2)+160×(1+60%)×0.5×(40÷2)-10400-6400
    =7520(元)
    答:售完这批T恤衫商店共获利7520元.
    本题考查列分式方程解实际问题,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    18、(1)125,75,75,70;(2)①见解析;②见解析.
    【解析】
    (1)根据平均数、方差、中位数、众数的概念以及求解方法分别进行求解即可得;
    (2)①根据平均数以及方差的大小关系进行比较分析即可;
    ②根据折线图的走势进行分析即可.
    【详解】
    (1)甲方差:,
    甲的中位数:75,
    乙的平均数:,
    乙的众数为70,
    故答案为:125,75,75,70;
    (2)①从平均数看,甲同学的成绩比乙同学稍好,但是从方差看,乙同学的方差小,乙同学成绩稳定,综合平均数和方差分析,乙同学总体成绩比甲同学好;
    ②从折线图上两名同学分数的走势,甲同学的成绩在稳步直线上升,属于进步计较快,乙同学的成绩有较大幅度波动,不算稳定.
    本题考查了折线统计图,正确理解方差、中位数、平均数、众数的含义是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x(x+6)
    【解析】
    根据提公因式法,可得答案.
    【详解】
    原式=x(6+x),
    故答案为:x(x+6).
    本题考查了因式分解,利用提公因式法是解题关键.
    20、
    【解析】
    人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。
    【详解】
    根据题意可列出
    此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式
    21、1.
    【解析】
    根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出平移的距离,进而根据平行四边形的面积公式即可求得.
    【详解】
    解:y=x-4,
    当y=0时,x-4=0,
    解得:x=4,
    即OA=4,
    过B作BC⊥OA于C,
    ∵△OAB是以OA为斜边的等腰直角三角形,
    ∴BC=OC=AC=2,
    即B点的坐标是(2,2),
    设平移的距离为a,
    则B点的对称点B′的坐标为(a+2,2),
    代入y=x-4得:2=(a+2)-4,
    解得:a=4,
    即△OAB平移的距离是4,
    ∴Rt△OAB扫过的面积为:4×2=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征、等腰直角三角形和平移的性质等知识点,能求出B′的坐标是解此题的关键.
    22、3;
    【解析】
    根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
    【详解】
    根据矩形的性质得△OBF≌△ODE,
    属于图中阴影部分的面积就是△ADC的面积.
    S△ADC=CD×AD=×2×3=3.
    故图中阴影部分的面积是3.
    本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
    23、2
    【解析】
    首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.
    【详解】
    ∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴AB=2CD=17,
    ∴BC===2,
    故答案为:2.
    此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)补图见解析(2)6;6;6;(3)4500本.
    【解析】
    (1)根据题意列式计算得到D类书的人数,补全条形统计图即可;
    (2)根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数;
    (3)用捐款平均数乘以总人数即可.
    【详解】
    (1)捐D类书的人数为:30-4-6-9-3=8,
    补图如图所示;
    (2)众数为:6 中位数为:6
    平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;
    (3)750×6=4500,
    即该单位750名职工共捐书约4500本.
    主要考查了中位数,众数,平均数的求法,条形统计图的画法,用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    25、证明见解析.
    【解析】
    利用平行四边形的性质得出 AO=CO,AD∥BC,进而得出∠EAC=∠FCO, 再利用 ASA 求出△AOE≌△COF,即可得出答案.
    【详解】
    ∵▱ABCD 的对角线 AC,BD 交于点 O,
    ∴AO=CO,AD∥BC,
    ∴∠EAC=∠FCO,
    在△AOE 和△COF 中,
    ∴△AOE≌△COF(ASA),
    ∴AE=CF.
    本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.
    26、(1)见解析;(2)AC=BD.
    【解析】
    探究:连结AC,由四个中点可得EF∥AC且EF=AC、GH∥AC且GH=AC,据此可得EF∥GH,且EF=GH,从而得证;
    应用:添加AC=BD,连接BD,由EF=AC、EH=BD,且AC=BD知EF=EH,根据四边形EFGH是平行四边形即可得证;
    【详解】
    探究:平行四边形,
    证明:连结AC,
    ∵E、F分别是AB、BC的中点,
    ∴EF∥AC,且EF=AC.
    ∵G、H分别是CD、AD的中点,
    ∴GH∥AC,且GH=AC.
    ∴EF∥GH,且EF=GH.
    ∴四边形EFGH是平行四边形.
    ​应用:
    AC=BD;
    连接BD,
    ∵EF=AC、EH=BD,且AC=BD,
    ∴EF=EH,
    又∵四边形EFGH是平行四边形,
    ∴四边形EFGH是菱形.
    故答案为:AC=BD.
    本题主要考查四边形的综合问题,解题的关键是掌握中位线定理,平行四边形、菱形的判定方法.
    题号





    总分
    得分
    批阅人
    x
    1
    0
    2
    y
    3
    m
    5
    平均数
    方差
    中位数
    众数

    75


    75


    33.3
    72.5

    相关试卷

    2024-2025学年浙江省宁波市东钱湖九校九上数学开学统考模拟试题【含答案】:

    这是一份2024-2025学年浙江省宁波市东钱湖九校九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省聊城东昌府区六校联考数学九上开学调研试题【含答案】:

    这是一份2024-2025学年山东省聊城东昌府区六校联考数学九上开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南京市六校联考数学九上开学复习检测试题【含答案】:

    这是一份2024-2025学年江苏省南京市六校联考数学九上开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map