搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】

    2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】第1页
    2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】第2页
    2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份2024-2025学年浙江省义乌市七校数学九年级第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知,如图一次函数y1=ax+b与反比例函数y2= 的图象如图示,当y1<y2时,x的取值范围是( )
    A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5
    2、(4分)等腰中,,用尺规作图作出线段BD,则下列结论错误的是( )
    A.B.C.D.的周长
    3、(4分)运用分式的性质,下列计算正确的是( )
    A.B.C.D.
    4、(4分)据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)( )
    A.21℃B.22℃C.23℃D.24℃
    5、(4分)已知四边形ABCD是平行四边形,下列结果正确的是( )
    A.当AB=BC时,它是矩形B.时,它是菱形
    C.当∠ABC=90°时,它是菱形D.当AC=BD时,它是正方形
    6、(4分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于( )
    A.75°B.45°C.60°D.30°
    7、(4分)如果,下列各式中不正确的是
    A.B.C.D.
    8、(4分)正十边形的每一个内角的度数为( )
    A.120°B.135°C.140°D.144°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
    10、(4分)计算:=____.
    11、(4分)已知关于函数,若它是一次函数,则______.
    12、(4分)正方形按如图所示的方式放置,点.和. 分别在直线和x轴上,已知点,则Bn的坐标是____________
    13、(4分)如图,等腰中,,,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:
    请根据以上信息,解答以下问题:
    (1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;
    (2)求出该班调查的家庭总户数是多少?
    (3)求该小区用水量不超过15的家庭的频率.
    15、(8分)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.
    (1)求降价后每枝玫瑰的售价是多少元?
    (2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
    16、(8分)解不等式组:.并把它的解集在数轴上表示出来
    17、(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
    (1)求线段CD的长;
    (2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
    (3)当点P在线段AD上运动时,求S与t的函数关系式.
    18、(10分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).
    (1)求m,n的值;
    (2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.
    (3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知=,=,那么=_____(用向量、的式子表示)
    20、(4分)的整数部分是a,小数部分是b,则________.
    21、(4分)如图,在平行四边形中,=5,=7,平分∠交边于点,则线段的长度为________.
    22、(4分)在函数中,自变量x的取值范围是________________.
    23、(4分)若是一元二次方程的两个实数根,则=__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
    ()若商场预计进货款为元,则这两种台灯各购进多少盏?
    ()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
    25、(10分)△ABC在平面直角坐标系中的位置如图所示.
    (1)画出△ABC关于y轴对称的△A1B1C1;
    (2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
    (3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
    26、(12分)已知一次函数的图象经过,两点.
    (1)求这个一次函数的解析式;
    (2)试判断点是否在这个一次函数的图象上;
    (3)求此函数图象与轴,轴围成的三角形的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.
    【详解】
    根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.
    故选D.
    本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.
    2、C
    【解析】
    根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.
    【详解】
    解:∵等腰△ABC中,AB=AC,∠A=36°,
    ∴∠ABC=∠ACB=72°,
    由作图痕迹发现BD平分∠ABC,
    ∴∠A=∠ABD=∠DBC=36°,
    ∴AD=BD,故A、B正确;
    ∵AD≠CD,
    ∴S△ABD=S△BCD错误,故C错误;
    △BCD的周长=BC+CD+BD=BC+AC=BC+AB,
    故D正确.
    故选C.
    本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.
    3、D
    【解析】
    根据分式的分子分母都乘以(或者除以)同一个整式,分式的值不变,可解答
    【详解】
    A、分子分母都除以x2,故A错误;
    B、分子分母都除以(x+y),故B错误;
    C、分子分母都减x,分式的值发生变化,故C错误;
    D、分子分母都除以(x﹣y),故D正确;
    故选:D.
    此题考查分式的基本性质,难度不大
    4、C
    【解析】
    根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.
    【详解】
    解:根据黄金比的值得:37×0.1≈23℃.
    故选C.
    本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.
    5、B
    【解析】
    根据矩形、菱形、正方形的的判定方法判断即可.
    【详解】
    解:A、当AB=BC时,平行四边形ABCD为菱形,所以A选项的结论错误;
    B、当AC⊥BD时,平行四边形ABCD为菱形,所以B选项的结论正确;
    C、当∠ABC=90°时,平行四边形ABCD为矩形,所以C选项的结论错误;
    D、当AC=BD时,平行四边形ABCD为矩形,所以D选项的结论不正确.
    故选:B.
    本题考查了正方形的判定,也考查了菱形、矩形的判定方法.正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.
    6、C
    【解析】
    首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.
    【详解】
    解:连接AC,
    ∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,
    ∴AB=AC,AD=AC,
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∴AB=BC=AC,AC=CD=AD,
    ∴∠B=∠D=60°,
    ∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,
    ∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.
    故选C.
    此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
    7、B
    【解析】
    根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.
    【详解】
    、,则,所以选项的结论正确;
    、,则,所以选项的结论错误;
    、,则,所以选项的结论正确;
    、,则,所以选项的结论正确.
    故选.
    本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
    8、D
    【解析】
    ∵一个正十边形的每个外角都相等,∴正十边形的一个外角为360÷10=36°.
    ∴每个内角的度数为180°–36°=144°;故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
    【详解】
    由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
    故答案为:1.
    考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
    10、1
    【解析】
    根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
    【详解】
    解:∵12=21,
    ∴=1,
    故答案为:1.
    本题考查了算术平方根的定义,先把化简是解题的关键.
    11、
    【解析】
    根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2,可得答案.
    【详解】
    由y=是一次函数,得
    m2-24=2且m-2≠0,
    解得m=-2,
    故答案为:-2.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.
    12、(2n-1,2n-1)
    【解析】
    首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
    【详解】
    解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
    ∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
    ∴A1的坐标是(0,1),A2的坐标是:(1,2),
    ∴,
    解得:,
    ∴直线A1A2的解析式是:y=x+1.
    ∵点B2的坐标为(3,2),
    ∴点A3的坐标为(3,4),
    ∴点B3的坐标为(7,4),
    ∴Bn的横坐标是:2n-1,纵坐标是:2n-1.
    ∴Bn的坐标是(2n-1,2n-1).
    故答案为: (2n-1,2n-1).
    此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.
    13、45°
    【解析】
    由等腰△ABC中,AB=AC,∠A=30°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.
    【详解】
    ∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=(180°-30°)÷2=75°,
    ∵DE是线段AB垂直平分线的交点,
    ∴AE=BE,∠A=∠ABE=30°,
    ∴∠CBE=∠ABC-∠ABE=75°-30°=45°.
    此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
    三、解答题(本大题共5个小题,共48分)
    14、(1)m=12,n=0.08;(2)50;(3)0.68.
    【解析】
    (1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;
    补充完整的频数直方图见详解;
    (2)根据任意一组频数和频率即可得出总频数,即总频数为;
    (3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
    【详解】
    解:(1)∵频数为6,频率为0.12
    ∴总频数为
    ∴m=50-6-16-10-4-2=12
    ∴n=4÷50=0.08
    数据求出后,即可将频数直方图补充完整,如下图所示:
    (2)根据(1)中即可得知,总频数为
    答:该班调查的家庭总户数是50户;
    (3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
    此题主要考查统计图和频数分布表的性质,熟练掌握其特征,即可得解.
    15、(1)2元;(2)至少购进玫瑰200枝.
    【解析】
    试题分析:(1)设降价后每枝玫瑰的售价是x元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;
    (2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.
    试题解析:(1)设降价后每枝玫瑰的售价是x元,依题意有
    =×1.5.
    解得x=2.
    经检验,x=2是原方程的解,且符合题意.
    答:降价后每枝玫瑰的售价是2元.
    (2)设购进玫瑰y枝,依题意有
    2(500-y)+1.5y≤900.
    解得y≥200.
    答:至少购进玫瑰200枝.
    16、1<x<4,数轴表示见解析.
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①得:x>1;
    解不等式②得:x<4,
    所以不等式组的解集为:1<x<4,
    解集在数轴上表示为:
    此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    17、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.
    【解析】
    (1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
    (2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.
    (3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
    【详解】
    (1)∵∠ACB=90°,AC=8,BC=1,
    ∴AB=,
    ∵S△ABC=AC•BC=AB•CD,
    ∴AC•BC=AB•CD,即:8×1=10×CD,
    ∴CD=;
    (2)在Rt△ADC中,AD=,BD=AB-AD=10-=,
    当点N在线段CD上时,如图1所示:
    ∵矩形PQMN,PQ总保持与AC垂直,
    ∴PN∥AC,
    ∴∠NPD=∠CAD,
    ∵∠PDN=∠ADC,
    ∴△PDN∽△ADC,
    ∴,即:,
    解得:PD=,
    ∴t=AD-PD=,
    当点Q在线段CD上时,如图2所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△DPQ∽△DBC,
    ∴,即:,
    解得:DP= ,
    ∴t=AD+DP=,
    ∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;
    (3)当Q在AC上时,如图3所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△APQ∽△ABC,
    ∴,即:,
    解得:AP= ,
    当0<t<时,重叠部分是矩形PHYN,如图4所示:
    ∵PQ∥BC,
    ∴△APH∽△ABC,
    ∴,即:,
    ∴PH=,
    ∴S=PH•PN=;
    当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.
    当<t≤时,如图5中重叠部分是五边形PQMJI,
    S=S矩形PNMQ-S△JIN=2- •(t-)[1-(-t)•]=-t2+t-.
    【点评】
    本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    18、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.
    【解析】
    (1)直接把已知点代入函数关系式进而得出m,n的值;
    (2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;
    (3)分别得出AO,BO的长,进而得出四边形PAOB的面积.
    【详解】
    (1)把P(1,2)代入y=x+n﹣2得:
    1+n﹣2=2,
    解得:n=3;
    把P(1,2)代入y=mx+3得:
    m+3=2,
    解得m=﹣1;
    (2)不等式mx+n>x+n﹣2的解集为:x<1;
    (3)当x=0时,y=x+1=1,
    故OA=1,
    当y=0时,y=﹣x+3,
    解得:x=3,
    则OB=3,
    四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.
    此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    根据,即可解决问题.
    【详解】
    ∵,
    ∴.
    故答案为.
    本题考查向量的定义以及性质,解题的关键是理解向量的定义,记住:,这个关系式.
    20、2
    【解析】
    因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
    【详解】
    因为1

    相关试卷

    2024-2025学年浙江省义乌市六校考九上数学开学综合测试试题【含答案】:

    这是一份2024-2025学年浙江省义乌市六校考九上数学开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省绍兴越城区五校联考九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024-2025学年浙江省绍兴越城区五校联考九年级数学第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省宁波市鄞州区七校九年级数学第一学期开学复习检测试题【含答案】:

    这是一份2024-2025学年浙江省宁波市鄞州区七校九年级数学第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map