终身会员
搜索
    上传资料 赚现金

    2024-2025学年重庆市万州第三中学九上数学开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年重庆市万州第三中学九上数学开学学业质量监测试题【含答案】第1页
    2024-2025学年重庆市万州第三中学九上数学开学学业质量监测试题【含答案】第2页
    2024-2025学年重庆市万州第三中学九上数学开学学业质量监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年重庆市万州第三中学九上数学开学学业质量监测试题【含答案】

    展开

    这是一份2024-2025学年重庆市万州第三中学九上数学开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
    ①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
    A.2B.3C.4D.5
    2、(4分)方程的解是
    A.B.C.D.或
    3、(4分)矩形的边长是,一条对角线的长是,则矩形的面积是( )
    A.B.C..D.
    4、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为( )
    A.B.C.D.
    5、(4分)如图,函数的图象所在坐标系的原点是( )
    A.点B.点C.点D.点
    6、(4分)已知关于的分式方程无解,则的值为( )
    A.B.C.D.或
    7、(4分)某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得( )
    A.B.
    C.D.
    8、(4分)一个多边形的内角和与外角和相等,则这个多边形的边数为( )
    A.8B.6C.5D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)
    10、(4分) “暑期乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是,, 如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择是________.
    11、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
    12、(4分)比较大小:_____1.(填“>”、“=”或“<”)
    13、(4分)如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.
    (1)求直线DE的函数关系式;
    (2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;
    (3)在(2)的条件下,求出四边形OHFG的面积.
    15、(8分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.
    (1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________ .

    (2)如图(2)AB∥EF,BC∥DE, ∠1与∠2的关系是:____________

    (3)经过上述证明,我们可以得到一个真命题:如果____ _____,那么____________.
    (4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?
    16、(8分)如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.
    (1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形.
    (2)已知BE=2cm,DF=3cm,求EF的长.
    17、(10分)
    18、(10分)先化简,再求值:,其中,
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
    20、(4分)一组数据为5,7,3,,6,4. 若这组数据的众数是5,则该组数据的平均数是______.
    21、(4分)如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,则下列结论:;;;其中正确结论的序号是______.
    22、(4分)若,则的值是________.
    23、(4分)将正比例函数y= -x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在2019年春季环境整治活动中,某社区计划对面积为的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用5天.
    (1)求甲、乙两工程队每天能完成绿化的面积;
    (2)设甲工程队施工天,乙工程队施工天,刚好完成绿化任务,求关于的函数关系式;
    (3)在(2)的条件下,若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
    25、(10分)解不等式组并求其整数解的和.
    解:解不等式①,得_______;
    解不等式②,得________;
    把不等式①和②的解集在数轴上表示出来:
    原不等式组的解集为________,
    由数轴知其整数解为________,和为________.
    在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.
    26、(12分)如图,中,,两点在对角线上,.
    (1)求证:;
    (2)当四边形为矩形时,连结、、,求的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    ①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
    ②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
    ③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
    ④根据三角形中位线定理可作判断;
    ⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
    【详解】
    ①∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC=∠ADC=60°,
    ∴∠DAE=∠BEA,
    ∴∠BAE=∠BEA,
    ∴AB=BE=1,
    ∴△ABE是等边三角形,
    ∴AE=BE=1,
    ∵BC=2,
    ∴EC=1,
    ∴AE=EC,
    ∴∠EAC=∠ACE,
    ∵∠AEB=∠EAC+∠ACE=60°,
    ∴∠ACE=30°,
    ∵AD∥BC,
    ∴∠CAD=∠ACE=30°,
    故①正确;
    ②∵BE=EC,OA=OC,
    ∴OE=AB=,OE∥AB,
    ∴∠EOC=∠BAC=60°+30°=90°,
    Rt△EOC中,OC=,
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠BAD=120°,
    ∴∠ACB=30°,
    ∴∠ACD=90°,
    Rt△OCD中,OD=,
    ∴BD=2OD=,故②正确;
    ③由②知:∠BAC=90°,
    ∴S▱ABCD=AB•AC,
    故③正确;
    ④由②知:OE是△ABC的中位线,
    又AB=BC,BC=AD,
    ∴OE=AB=AD,故④正确;
    ⑤∵四边形ABCD是平行四边形,
    ∴OA=OC=,
    ∴S△AOE=S△EOC=OE•OC=××,
    ∵OE∥AB,
    ∴,
    ∴,
    ∴S△AOP= S△AOE==,故⑤正确;
    本题正确的有:①②③④⑤,5个,
    故选D.
    本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
    2、D
    【解析】
    方程移项后,分解因式利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    【详解】
    方程x1=1x,
    移项得:x1-1x=0,
    分解因式得:x(x-1)=0,
    可得x=0或x-1=0,
    解得:x1=0,x1=1.
    故选:D.
    此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.
    3、C
    【解析】
    根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.
    【详解】
    由题意及勾股定理得矩形另一条边为==4
    所以矩形的面积=44=16.
    故答案选C.
    本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.
    4、A
    【解析】
    由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.
    【详解】
    解:∵AD′=AD=2,

    ∴,
    ∵C′D′=2,C′D′∥AB,
    ∴C′(2, ),
    故选A.
    本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
    5、A
    【解析】
    由函数解析式可知函数关于y轴对称,当x>0时,图象在一象限,当x<0时,图象在二象限,即可求解.
    【详解】
    由已知可知函数y关于y轴对称,∴y轴与直线PM重合.当x>0时,图象在一象限,当x<0时,图象在二象限,即图象在x轴上方,所以点M是原点.
    故选A.
    本题考查了反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.
    6、D
    【解析】
    分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x的值,代入整式方程计算即可求出m的值.
    【详解】
    解:去分母得:3−2x−9+mx=−x+3,
    整理得:(m−1)x=9,
    当m−1=0,即m=1时,该整式方程无解;
    当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,
    把x=3代入整式方程得:3m−3=9,
    解得:m=4,
    综上,m的值为1或4,
    故选:D.
    此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    7、B
    【解析】
    设原计划每天修建管道x米,则原计划修建天数为天.实际前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x (1+25%)米,需要天. 根据实际天数比原计划提前4天完成任务即可得出数量关系.
    【详解】
    设原计划每天修建管道x米,
    根据题意的– =4,
    - - =4,
    - =4,
    选项B正确.
    本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;难点是得到实际修建的天数.
    8、D
    【解析】
    利用多边形的内角和与外角和公式列出方程,然后解方程即可.
    【详解】
    设多边形的边数为n,根据题意
    (n-2)•180°=360°,
    解得n=1.
    故选:D.
    本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、正确
    【解析】
    先去括号,再把除法变为乘法化简,化简后代入数值判断即可.
    【详解】
    解:,
    因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,
    所以把“”错抄成“”,计算结果也是正确的,
    故答案为:正确.
    本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.
    10、乙组
    【解析】
    根据方差的定义,方差越小数据越稳定解答即可.
    【详解】
    解:∵,,,
    ∵最小,
    ∴乙组学生年龄最相近,应选择乙组.
    故答案为:乙组.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    11、5
    【解析】
    由已知条件易得,,两者结合即可求得所求式子的值了.
    【详解】
    ∵,
    ∴,
    ∵,
    ∴.
    故答案为:5.
    “能由已知条件得到和”是解答本题的关键.
    12、>.
    【解析】
    【分析】先求出1=,再比较即可.
    【详解】∵12=9<10,
    ∴>1,
    故答案为:>.
    【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.
    13、14
    【解析】
    根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.
    【详解】
    由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6
    ∵∠B=120°,BC=4

    解得AB=6
    H点表示点P到达A时运动的路程为4+6+4=14
    故答案为14
    本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.
    三、解答题(本大题共5个小题,共48分)
    14、(1)直线DE的函数关系式为:y=﹣x+8;(2)点F的坐标为;(4,4);m=;(3)18.
    【解析】
    试题分析:(1)由顶点B的坐标为(6,4),E为AB的中点,可求得点E的坐标,又由过点D(8,0),利用待定系数法即可求得直线DE的函数关系式;
    (2)由(1)可求得点F的坐标,又由函数y=mx﹣2的图象经过点F,利用待定系数法即可求得m值;
    (3)首先可求得点H与G的坐标,即可求得CG,OC,CF,OH的长,然后由S四边形OHFG=S梯形OHFC+S△CFG,求得答案.
    解:(1)设直线DE的解析式为:y=kx+b,
    ∵顶点B的坐标为(6,4),E为AB的中点,
    ∴点E的坐标为:(6,2),
    ∵D(8,0),
    ∴,
    解得:,
    ∴直线DE的函数关系式为:y=﹣x+8;
    (2)∵点F的纵坐标为4,且点F在直线DE上,
    ∴﹣x+8=4,
    解得:x=4,
    ∴点F的坐标为;(4,4);
    ∵函数y=mx﹣2的图象经过点F,
    ∴4m﹣2=4,
    解得:m=;
    (3)由(2)得:直线FH的解析式为:y=x﹣2,
    ∵x﹣2=0,
    解得:x=,
    ∴点H(,0),
    ∵G是直线DE与y轴的交点,
    ∴点G(0,8),
    ∴OH=,CF=4,OC=4,CG=OG﹣OC=4,
    ∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.
    15、(1)∠1=∠1,证明见解析;(1)∠1+∠1=180°,证明见解析;(3)一个角的两边与另一个角的两边分别平行,这两个角相等或互补;(4)这两个角分别是30°,30°或70°,110°.
    【解析】
    (1)根据两直线平行,内错角相等,可求出∠1=∠1;
    (1)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠1=180°;
    (3)由(1)(1)可得出结论;
    (4)由(3)可列出方程,求出角的度数.
    【详解】
    解:(1)AB∥EF,BC∥DE,∠1与∠1的关系是:∠1=∠1
    证明:∵AB∥EF
    ∴∠1=∠BCE
    ∵BC∥DE
    ∴∠1=∠BCE
    ∴∠1=∠1.
    (1)AB∥EF,BC∥DE.∠1与∠1的关系是:∠1+∠1=180°.
    证明:∵AB∥EF
    ∴∠1=∠BCE
    ∵BC∥DE
    ∴∠1+∠BCE=180°
    ∴∠1+∠1=180°.
    (3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
    (4)解:设其中一个角为x°,列方程得x=1x-30或x+1x-30=180,
    故x=30或x=70,
    所以1x-30=30或110,
    答:这两个角分别是30°,30°或70°,110°.
    本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.
    16、(1)见解析;(2)5cm.
    【解析】
    【分析】(1)根据旋转角度、旋转方向、旋转点找出各点的对应点,顺次连接即可得出;
    (2)首先证明△ABE≌△ADM,进而得到∠MAF=45°;证明△EAF≌△MAF,得到EF=FG问题即可解决.
    【详解】(1)如图所示;
    (2)由(1)知:△ADM≌△ABE,M、D、F共线,
    ∴AD=AB,AM=AE,∠MAD=∠BAE,MD=BE=2,
    ∵四边形ABCD为正方形,∠EAF=45°,∴∠BAE+∠DAF=45°,
    ∴∠MAD+∠DAF=45°,
    ∴△AMF≌△AEF(SAS),
    ∴EF=MF,
    ∵MF=MD+DF,
    ∴EF=MF=MD+DF=2+3=5cm.
    【点睛】本题考查了正方形的性质、旋转的性质、全等三角形的判定与性质,熟练掌握和灵活运用相关性质是解题的关键.
    17、3
    【解析】
    试题分析:利用平方差公式展开和二次根式的乘除法则运算;然后合并即可.
    试题解析:原式=7-5+3-2
    =2+1
    =3.
    18、
    【解析】
    先利用二次根式的性质化简,合并后再把已知条件代入求值.
    【详解】
    原式=
    当,y= 4时
    原式=
    本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
    【详解】
    解:∵AC⊥BC,AB=CD=10,AD=6,
    ∴AC===8,
    ∵▱ABCD的对角线AC与BD相交于点O,
    ∴BO=DO,AO=CO=AC=4,
    ∴OD===2 .
    ∴BD=4.
    故答案为:4.
    本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
    20、5
    【解析】
    首先根据众数的定义:是一组数据中出现次数最多的数值,即可得出,进而可求得该组数据的平均数.
    【详解】
    解:根据题意,可得
    则该组数据的平均数为
    故答案为5.
    此题主要考查众数的理解和平均数的求解,熟练掌握,即可解题.
    21、①③④
    【解析】
    (1)∵抛物线开口向下,
    ∴,
    又∵对称轴在轴的右侧,
    ∴ ,
    ∵抛物线与轴交于正半轴,
    ∴ ,
    ∴,即①正确;
    (2)∵抛物线与轴有两个交点,
    ∴,
    又∵,
    ∴,即②错误;
    (3)∵点C的坐标为,且OA=OC,
    ∴点A的坐标为,
    把点A的坐标代入解析式得:,
    ∵,
    ∴,即③正确;
    (4)设点A、B的坐标分别为,则OA=,OB=,
    ∵抛物线与轴交于A、B两点,
    ∴是方程的两根,
    ∴,
    ∴OA·OB=.即④正确;
    综上所述,正确的结论是:①③④.
    22、1
    【解析】
    利用完全平方公式变形,原式=,把代入计算即可.
    【详解】
    解:
    把代入得:
    原式=.
    故答案为:1.
    本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.
    23、y=-x+1
    【解析】
    根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.
    【详解】
    由题意得:y = -x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.
    本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.
    二、解答题(本大题共3个小题,共30分)
    24、(1)甲、乙两工程队每天能完成绿化面积分别为和;(2);(3)甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.
    【解析】
    (1)设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;
    (2)以(1)为基础表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;
    (3)用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.
    【详解】
    解:(1)设乙工程队每天能完成绿化的面积为,
    则甲工程队每天能完成绿化面积为.
    依题意得:,解得
    经检验:是原方程的根
    .
    答:甲、乙两工程队每天能完成绿化面积分别为和.
    (2)由(1)得:
    (3)由题意可知:

    解得
    总费用
    值随值的增大而增大.
    当天时,
    答:甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.
    此题考查一次函数的应用,分式方程的应用,解题关键在于理解题意列出方程.
    错因分析:中等题.失分的原因是:1.不能根据题意正确列出方程,解方程时出错;2.没有正确找出一次函数关系;3.不能利用一次函数的增减性求最小值;4.答题过程不规范,解方程后忘记检验.
    25、详见解析.
    【解析】
    先求出不等式组的解集,然后找出其中的整数相加即可.
    【详解】

    解:解不等式①,得x≥-5;
    解不等式②,得x

    相关试卷

    2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年青岛市高中学段学校九上数学开学学业质量监测试题【含答案】:

    这是一份2024-2025学年青岛市高中学段学校九上数学开学学业质量监测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年衢州市重点中学九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年衢州市重点中学九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map