2024-2025学年重庆市文理院附属中学数学九年级第一学期开学统考模拟试题【含答案】
展开
这是一份2024-2025学年重庆市文理院附属中学数学九年级第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数据中,不能作为直角三角形边长的是( )
A.B.C.D.
2、(4分)点位于平面直角坐标系中的( ).
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()
A.20B.25C.35D.27
4、(4分)如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
A.点MB.点NC.点PD.点Q
5、(4分)如图,将点P(-1,3)向右平移n个单位后落在直线y=2x-1上的点P′处,则n等于( )
A.2B.C.3D.4
6、(4分)中,,则的度数是( )
A.B.C.D.
7、(4分)某交警在一个路口统计的某时段来往车辆的车速情况如表:
则上述车速的中位数和众数分别是( )
A.49,50B.49.5,7C.50,50D.49.5,50
8、(4分)已知正比例函数y=﹣2x的图象经过点(a,2),则a的值为( )
A.B.﹣1C.﹣D.﹣4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的根是__________.
10、(4分)观察下列各式:
,
,
,
……
请利用你所发现的规律,
计算+++…+,其结果为_______.
11、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
12、(4分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为__________.
13、(4分)已知直线y=kx过点(1,3),则k的值为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
15、(8分)某校名学生参加植树活动,要求每人植棵,活动结束后随机抽查了名学生每人的植树量,并分为四种类型,:棵;;棵;:棵,:棵。将各类的人绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误。
回答下列问题:
(1)写出条形图中存在的错误,并说明理由.
(2)写出这名学生每人植树量的众数、中位数.
(3)在求这名学生每人植树量的平均数.
(4)估计这名学生共植树多少棵.
16、(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
17、(10分)在2019年春季环境整治活动中,某社区计划对面积为的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用5天.
(1)求甲、乙两工程队每天能完成绿化的面积;
(2)设甲工程队施工天,乙工程队施工天,刚好完成绿化任务,求关于的函数关系式;
(3)在(2)的条件下,若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
18、(10分)如图,已知□ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当_____________时,在实数范围内有意义.
20、(4分)已知点(2,7)在函数y=ax+3的图象上,则a的值为____.
21、(4分)计算:=_____________.
22、(4分)如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.
23、(4分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.
(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;
(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;
(3)如图3,当点在线段的延长线上,且时,求线段的长.
25、(10分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.
请根据图中的信息解答下列问题
(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
26、(12分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.因此,只需要判断两个较小的数的平方和是否等于最大数的平方即可判断.
【详解】
解:A、92+122=152,根据勾股定理的逆定理可知是直角三角形,故选项错误;
B、52+122=132,根据勾股定理的逆定理可知是直角三角形,故选项错误;
C、32+52≠72,根据勾股定理的逆定理可知不是直角三角形,故选项正确;
D、12+=22,根据勾股定理的逆定理可知是直角三角形,故选项错误.
故选C.
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.
2、A
【解析】
本题根据各象限内点的坐标的特征即可得到答案
【详解】
解:∵点的横纵坐标都是正的
∴,点P在第一象限
故选A
本题考查平面直角坐标系中四个象限内点的横纵坐标的正负,准确区分为解题关键
3、D
【解析】
第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1= 个,进一步求得第(6)个图形中面积为1的正方形的个数即可.
【详解】
第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。
故选:D
此题考查规律型:图形的变化类,解题关键在于找到规律
4、C
【解析】
试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.
【详解】
解:连接OM,ON,OQ,OP,
∵MN、MQ的垂直平分线交于点O,
∴OM=ON=OQ,
∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,
∴点P不一定在圆上.
故选C.
考点:点与圆的位置关系;线段垂直平分线的性质.
5、C
【解析】
点向右平移得到,根据平移性质可设(),代入中可求出,则.
【详解】
∵点向右平移得到,
∴设(),代入,解得,
则 ,故答案选C.
本题考查了坐标系中函数图像平移的性质,以及利用函数解析式求点坐标,熟练掌握这些知识点是解题关键.
6、B
【解析】
由平行四边形ABCD中,若∠A+∠C=130°,可求得∠A的度数,继而求得∠D的度数.
【详解】
如图,
∵四边形ABCD是平行四边形,
∴∠A=∠C,
∵∠A+∠C=130°,
∴∠A=65°,
∵四边形ABCD是平行四边形,
∴AB//DC
∴∠A+∠D=180°
∴∠D=180°-∠A=115°.
故选:B.
此题考查了平行四边形的性质.此题比较简单,注意熟记定理是解此题的关键.
7、D
【解析】
根据中位数的众数定义即可求出.
【详解】
车辆总数为:4+6+7+2+1=20辆,则中位数为:(第10个数+第11个数)
众数为出现次数最多的数:50
故选D
本题考查了中位数和众数,难度低,属于基础题,熟练掌握中位数的求法是解题关键.
8、B
【解析】
把点(a,2)代入y=﹣2x得到关于a的一元一次方程,解之即可.
【详解】
解:把点(a,2)代入y=﹣2x得:
2=﹣2a,
解得:a=﹣1,
故选:B.
本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解1x4=31得x1=4或x1=-4(舍),再解x1=4可得.
【详解】
解:1x4=31,
x4=16,
x1=4或x1=-4(舍),
∴x=±1,
故答案为:x=±1.
本题考查解高次方程的能力,利用平方根的定义降幂、求解是解题的关键.
10、
【解析】
分析:直接根据已知数据变化规律进而将原式变形求出答案.
详解:由题意可得:
+++…+
=+1++1++…+1+
=9+(1﹣+﹣+﹣+…+﹣)
=9+
=9.
故答案为9.
点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.
11、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、.
【解析】
根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
【详解】
解:根据勾股定理可得:
,即x2-8x+16+x2-4x+4= x2,
解得:x1=2(不合题意舍去),x2=10,
10-2=8(尺),
10-4=6(尺).
答:门高8尺,门宽6尺,对角线长10尺.
故答案为: .
本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题的关键.
13、1
【解析】
将点(1,1)代入函数解析式即可解决问题.
【详解】
解:∵直线y=kx过点(1,1),
∴1=k,
故答案为:1.
本题主要考查了一次函数图象上点的坐标特征,解决问题的关键是将点的坐标代入解析式,利用方程解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).
【解析】
(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出点B′、C′的坐标即可;
(3)根据平移规律写出即可.
【详解】
解:(1)△A′B′C′如图所示;
(2)B′(﹣4,1)、C′(﹣1,﹣1);
(3)∵点A(3,4)、A′(﹣2,2),
∴平移规律为向左平移5个单位,向下平移2个单位,
∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).
故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).
本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
15、(1)D;(2)5,5;(3)这名学生每人植树量的平均数5.3;(4)估计这260名学生共植树1378棵.
【解析】
(1)利用总人数乘对应的百分比求解即可;
(2)根据众数、中位数的定义即可直接求解;
(3)直接列式即可求得调查的20人的平均数;
(4)用平均数乘以总人数260即可.
【详解】
(1)D错误,理由:20×10%=2≠3;
(2)由题意可知,植树5棵人数最多,故众数为5,
共有20人植树,其中位数是第10、11人植树数量的平均数,
即(5+5)=5,故中位数为5;
(3)这名学生每人植树量的平均数(4×4+5×8+6×6+7×2)÷20=5.3,
(4)估计这260名学生共植树5.3×260=1378(棵).
答:估计这260名学生共植树1378棵
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
16、(1)见解析;(2)1.
【解析】
(1)先证四边形ABEF为平行四边形,继而再根据AB=AF,即可得四边形ABEF为菱形;
(2)由四边形ABEF为菱形可得AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,求出AO的长即可得答案.
【详解】
(1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠FAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=FA,
∴四边形ABEF为平行四边形,
∵AB=AF,
∴四边形ABEF为菱形;
(2)∵四边形ABEF为菱形,
∴AE⊥BF,BO=FB=3,AE=2AO,
在Rt△AOB中,AO==4,
∴AE=2AO=1.
本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.
17、(1)甲、乙两工程队每天能完成绿化面积分别为和;(2);(3)甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.
【解析】
(1)设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;
(2)以(1)为基础表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;
(3)用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.
【详解】
解:(1)设乙工程队每天能完成绿化的面积为,
则甲工程队每天能完成绿化面积为.
依题意得:,解得
经检验:是原方程的根
.
答:甲、乙两工程队每天能完成绿化面积分别为和.
(2)由(1)得:
(3)由题意可知:
即
解得
总费用
值随值的增大而增大.
当天时,
答:甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.
此题考查一次函数的应用,分式方程的应用,解题关键在于理解题意列出方程.
错因分析:中等题.失分的原因是:1.不能根据题意正确列出方程,解方程时出错;2.没有正确找出一次函数关系;3.不能利用一次函数的增减性求最小值;4.答题过程不规范,解方程后忘记检验.
18、证明见解析.
【解析】
由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.
【详解】
证明:∵四边形ABCD是平行四边形,
∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,
∵AE平分∠BAD,CF平分∠BCD,
∴∠EAB=∠BAD,∠FCD=∠BCD,
∴∠EAB=∠FCD,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA),
∴BE=DF.
∵AD=BC,
∴AF=EC.
本题主要考查平行四边形的性质与判定;证明四边形AECF为平行四边形是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
20、1.
【解析】
利用待定系数法即可解决问题;
【详解】
∵点(1,7)在函数y=ax+3的图象上,∴7=1a+3,∴a=1,
故答案为:1.
本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.
21、
【解析】
根据积的乘方和整式的运算法则,先算乘方再算乘法即可得出答案
【详解】
本题考查的是积的乘方和整式的运算法则,能够准确计算是解题的关键。
22、
【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.
【详解】
∵正方形ABCD是轴对称图形,AC是一条对称轴,
∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,
∵AB=4,AF=2,∴AG=AF=2,
∴EG=.
故答案为.
本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.
23、(-2,-2)
【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【详解】
“卒”的坐标为(﹣2,﹣2),
故答案是:(﹣2,﹣2).
考查了坐标确定位置,关键是正确确定原点位置.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析;(3).
【解析】
(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
(2)证△BAE≌△CAF即可得;
(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.
【详解】
解:(1)如图1,连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC中点,
∴AE⊥BC,BE=BC=AB
在Rt△ABE中,AE=BEtanB=BE;
(2)证明:连接,如图2中,
∵四边形是菱形,,
∴与都是等边三角形,
∴,.
∵,
∴,
在和中,
,
∴.
∴.
(3)解:连接,过点作于点,如图3所示,
∵,,
∴.
在中,
∵,,
∴,
∴.
在中,
∵,,
∴,
∴.
由(2)得,,
则,
∵,
∴,
可得,
∴,
∴.
考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.
25、(1)图形见解析(2)56(3)
【解析】
试题分析:(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;
(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;
(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.
试题解析:(1)总人数为14÷28%=50人,
B等人数为50×40%=20人.
条形图补充如下:
(2)该年级足球测试成绩为D等的人数为700×=56(人).
故答案为56;
(3)画树状图:
共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,
所以恰好选到甲、乙两个班的概率是=.
考点:1、列表法与树状图法;2、用样本估计总体;3、扇形统计图;4、条形统计图
26、见解析.
【解析】
如图,利用基本作图作MN垂直平分AB得到点E,先计算出∠BAC=36°,再利用AD是△ABC的角平分线得到∠DAB=18°,再利用线段垂直平分线的性质和等腰三角形的性质得到∠EBA=∠EAB=18°,接着利用三角形外角性质得到∠DEB=36,然后计算出∠DBE=36°得到∠DEB=∠DBE,从而得到DE=DB
【详解】
如图,点E为所作;
∵∠C=90°,∠B=54°,
∴∠BAC=36°,
∵AD是△ABC的角平分线,
∴∠DAB= ×36°=18°,
∵MN垂直平分AB,
∴EA=EB,
∴∠EBA=∠EAB=18°,
∴∠DEB=∠EAB+∠EBA=36°,
∵∠DBE=54°﹣18°=36°,
∴∠DEB=∠DBE,
∴DE=DB.
此题考查线段垂直平分线的性质和作图一基本作图,解题关键在于利用垂直平分线的性质解答
题号
一
二
三
四
五
总分
得分
车速(km/h)
48
49
50
51
52
车辆数(辆)
4
6
7
2
1
相关试卷
这是一份2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年重庆市巴蜀中学数学九年级第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。