终身会员
搜索
    上传资料 赚现金
    2024年阿坝市重点中学数学九上开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024年阿坝市重点中学数学九上开学教学质量检测试题【含答案】01
    2024年阿坝市重点中学数学九上开学教学质量检测试题【含答案】02
    2024年阿坝市重点中学数学九上开学教学质量检测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年阿坝市重点中学数学九上开学教学质量检测试题【含答案】

    展开
    这是一份2024年阿坝市重点中学数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某班名学生的身高情况如下表:
    关于身高的统计量中,不随、的变化而变化的有( )
    A.众数,中位数B.中位数,方差C.平均数,方差D.平均数,众数
    2、(4分)已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是( )
    A.经过2小时两人相遇
    B.若乙行驶的路程是甲的2倍,则t=3
    C.当乙到达终点时,甲离终点还有60千米
    D.若两人相距90千米,则t=0.5或t=4.5
    3、(4分)如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有( )
    A.1个B.2个C.3个D.4个
    4、(4分)估计5﹣的值应在( )
    A.4和5之间B.5和6之间C.6和7之间D.7和8之间
    5、(4分)二次根式中的取值范围是( )
    A.B.C.D.
    6、(4分)在△ABC中,若AB=8,BC=15,AC=17,则AC边上的中线BD的长为( )
    A.8B.8.5C.9D.9.5
    7、(4分)=( )
    A.4B.2C.﹣2D.±2
    8、(4分)如图,在△ABC中,点D,E分别是AB,AC的中点,若BC=6,则DE等于( ).
    A.3B.4C.5D.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数y=x+4的图象经过点(m,6),则m=_____.
    10、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.
    11、(4分)为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:
    某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.
    12、(4分)方程的解为_________.
    13、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
    (1)求证:四边形ABCD是菱形;
    (2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
    15、(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
    他们的各项成绩如下表所示:
    (1)直接写出这四名候选人面试成绩的中位数;
    (2)现得知候选人丙的综合成绩为87.6分,求表中x的值;
    (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.
    16、(8分)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y(k<0,x<0)的图象上,点P(m,n)是函数y(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.
    (1)设矩形OEPF的面积为S1,求S1;
    (1)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S1.写出S1与m的函数关系式,并标明m的取值范围.
    17、(10分)如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB平分∠ADC,作DE⊥BC,垂足为E.
    (1)求证:四边形ABCD为菱形;
    (2)若BD=8,AC=6,求DE的长.
    18、(10分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.
    (1)这一天的最高温度是多少?是在几时到达的?
    (2)这一天的温差是多少?从最低温度到最高温度经过多长时间?
    (3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果一组数据a ,a ,…a的平均数是2,那么新数据3a ,3a ,…3a的平均数是______.
    20、(4分)若,则的值为______.
    21、(4分)如图,在直角坐标系中,有菱形OABC,A点的坐标是(5,0),双曲线经过点C,且OB•AC=40,则k的值为_________ .
    22、(4分)菱形的边长为,,则以为边的正方形的面积为__________.
    23、(4分)人体中红细胞的直径约为0.0000077 m,数据0.0000077用科学记数法表示为________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.
    (1)求证:AB=EF;
    (2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.
    25、(10分)我国国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚两地海拔高度约为米,山顶处的海拔高度约为米,由处望山脚处的俯角为由处望山脚处的俯角为,若在两地间打通一隧道,求隧道最短为多少米?(结果取整数,参考数据)
    26、(12分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;
    (1)求△DAC的面积;
    (2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;
    (3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据统计表可求出中位数和众数,无法求出平均数和方差,根据所求结果即可解答.
    【详解】
    ∵x+y=30-6-8-5-4=7,1.53出现了8次,
    ∴众数是1.53,中位数是(1.53+1.53)÷2=1.53,不随、的变化而变化;
    ∵x与y的值不确定,
    ∴无法求出平均数和方差.
    故选A.
    此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    2、B
    【解析】
    由图象得到经过2小时两人相遇,A选项正确,由于乙的速度是=40千米/时,乙的速度是甲的速度的2倍可知B选项错误,计算出乙到达终点时,甲走的路程,可得C选项正确,当0【详解】
    由图象知:经过2小时两人相遇,A选项正确;
    甲的速度是20千米/小时,则乙的速度是=40千米/时,乙的速度是甲的速度的2倍,所以在乙到达终点之前,乙行驶的路程都是甲的二倍,B选项错误;
    乙到达终点时所需时间为=3(小时),3小时甲行驶3×20=60(千米),离终点还有120-60=60(千米),故C选项正确,
    当0当3∴若两人相距90千米,则t=0.5或t=4.5,故D正确.
    故选B.
    此题考查一次函数的应用,解题关键在于看懂函数图象,从函数图像得出解题所需的必要条件.
    3、D
    【解析】
    试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
    (2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
    (1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.
    (4)S1=,S2=,S1=,∵,∴S1+S2=S1.
    综上,可得:面积关系满足S1+S2=S1图形有4个.
    故选D.
    考点:勾股定理.
    4、D
    【解析】
    先合并后,再根据无理数的估计解答即可.
    【详解】
    5−=5−2=3=,
    ∵7<<8,
    ∴5−的值应在7和8之间,
    故选D.
    本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
    5、D
    【解析】
    根据二次根式有意义的条件可得出,再求x的取值范围即可.
    【详解】
    解:∵

    故选:D.
    本题考查的知识点是二次根式的定义,根据二次根式被开方数大于等于零解此题.
    6、B
    【解析】
    首先判定△ABC是直角三角形,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.
    【详解】
    ∵82+152=289=172,
    ∴AB2+BC2=AC2,
    ∴△ABC是直角三角形,∠ABC=90°,
    ∵BD是AC边上的中线,
    ∴BD=AC=8.5,
    故选B.
    此题主要考查了勾股定理逆定理,以及直角三角形的性质,关键是正确判定△ABC的形状.
    7、B
    【解析】
    根据算术平方根,即可解答.
    【详解】
    ==2,
    故选B.
    本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.
    8、A
    【解析】
    由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.
    【详解】
    ∵D、E是AB、AC中点,
    ∴DE为△ABC的中位线,
    ∴ED=BC=1.
    故选A.
    本题考查了三角形的中位线定理,用到的知识点为:三角形的中位线等于三角形第三边的一半.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    试题分析:直接把点(m,6)代入一次函数y=x+4即可求解.
    解:∵一次函数y=x+4的图象经过点(m,6),
    ∴把点(m,6)代入一次函数y=x+4得
    m+4=6
    解得:m=1.
    故答案为1.
    10、6cm
    【解析】
    根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.
    【详解】
    解::如图,D,E,F分别是△ABC的三边的中点,
    则DE=AC,DF=BC,EF=AB.
    ∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.
    本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.
    11、1
    【解析】
    根据题意算出5种方案的钱数,故可求解.
    【详解】
    解:连续6天不限次数乘坐地铁有5种方案
    方案①:买一日票6张,费用20×6=120(元)
    方案②:买二日票3张:30×3=90(元)
    方案③:买三日票2张:40×2=1(元)
    方案④:买一日票1张,五日票1张:20+70=120(元)
    方案⑤:买七日票1张:90元
    故方案③费用最低:40×2=1(元)
    故答案为1.
    此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.
    12、
    【解析】
    此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.
    【详解】





    故答案为:.
    此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.
    13、1
    【解析】
    由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
    【详解】
    ∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
    ∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
    ∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
    故答案为:1.
    本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
    (2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
    【详解】
    (1)在△ADE与△CDE中,

    ∴△ADE≌△CDE,
    ∴∠ADE=∠CDE,
    ∵AD∥BC,
    ∴∠ADE=∠CBD,
    ∴∠CDE=∠CBD,
    ∴BC=CD,
    ∵AD=CD,
    ∴BC=AD,
    ∴四边形ABCD为平行四边形,
    ∵AD=CD,
    ∴四边形ABCD是菱形;
    (2)∵BE=BC,
    ∴∠BCE=∠BEC,
    ∵∠CBE:∠BCE=2:3,
    ∴∠CBE=180× =45°,
    ∵四边形ABCD是菱形,
    ∴∠ABE=45°,
    ∴∠ABC=90°,
    ∴四边形ABCD是正方形.
    15、(1)这四名候选人面试成绩的中位数为89(分);(2)表中x的值为86;(3)以综合成绩排序确定所要招聘的前两名的人选是甲和丙.
    【解析】
    (1)根据中位数的概念计算;
    (2)根据题意列出方程,解方程即可;
    (3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.
    【详解】
    (1)这四名候选人面试成绩的中位数为:=89(分);
    (2)由题意得,x×60%+90×40%=87.6
    解得,x=86,
    答:表中x的值为86;
    (3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),
    乙候选人的综合成绩为:84×60%+92×40%=87.2(分),
    丁候选人的综合成绩为:88×60%+86×40%=87.2(分),
    ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.
    本题考查的是中位线、加权平均数,掌握中位数的概念、加权平均数的计算公式是解题的关键.
    16、(1);(1) .
    【解析】
    (1)根据正方形的面积求出点B的坐标,进而可求出函数解析式,由点P在函数图象上即可求出结果;
    (1)由于点P与点B的位置关系不能确定,故分两种情况进行讨论计算即可.
    【详解】
    解:(1)∵正方形的面积为4,
    ∴,
    ∴,
    把代入中,,
    ∴,
    ∴解析式为,
    ∵在的图象上,
    ∴,即,
    ∴;
    (1)①当在点上方时,

    ②当在点下方时,

    综上,.

    本题考查了反比例函数与几何的综合,难度不大,要注意当点的位置不确定时,需观察图形判断是否进行分类讨论.
    17、(1)见解析;(2)
    【解析】
    (1)由ASA证明△OAD≌△OCB得出OD=OB,得出四边形ABCD是平行四边形,再证出∠CBD=∠CDB,得出BC=DC,即可得出四边形ABCD是菱形;
    (2)由菱形的性质得出OB=BD=4,OC=AC=3,AC⊥BD,由勾股定理得出BC==5,证出△BOC∽△BED,得出,即可得出结果.
    【详解】
    (1)证明:∵O为△ABC边AC的中点,AD∥BC,
    ∴OA=OC,∠OAD=∠OCB,∠AOD=∠COB,
    在△OAD和△OCB中,

    ∴△OAD≌△OCB(ASA),
    ∴OD=OB,
    ∴四边形ABCD是平行四边形,
    ∵DB平分∠ADC,
    ∴∠ADB=∠CDB,
    ∴∠CBD=∠CDB,
    ∴BC=DC,
    ∴四边形ABCD是菱形;
    (2)解:∵四边形ABCD是菱形,
    ∴OB=BD=4,OC=AC=3,AC⊥BD,
    ∴∠BOC=90°,
    ∴BC==5,
    ∵DE⊥BC,
    ∴∠E=90°=∠BOC,
    ∵∠OBC=∠EBD,
    ∴△BOC∽△BED,
    ∴,即,
    ∴DE=.
    本题考查了菱形的判定与性质、平行四边形的判定、全等三角形的判定与性质、勾股定理、相似三角形的判定和性质;熟练掌握菱形的判定与性质是解题的关键.
    18、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.
    【解析】
    (1)观察图象,可知最高温度为37℃,时间为15时;
    (2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;
    (3)观察图象可求解.
    【详解】
    解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;
    (2)∵最高温是15时37℃,最低温是3时23℃,
    ∴温差为: ,
    则经过的时间为:: (时);
    (3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.
    本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、6
    【解析】
    根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.
    【详解】
    解:一组数据,,,的平均数为2,

    ,,,的平均数是
    故答案为6
    本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    20、.
    【解析】
    由可得,化简即可得到,再计算,即可求得=.
    【详解】
    ∵,
    ∴,
    ∴,
    ∴,
    ∴=.
    故答案为:.
    本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.
    21、12
    【解析】
    过点C作于D,根据A点坐标求出菱形的边长,再根据菱形的面积求得CD,然后利用勾股定理求得OD,从而得到C点坐标,代入函数解析式中求解.
    【详解】
    如图,过点C作于D,
    ∵点A的坐标为(5,0),
    ∴菱形的边长为OA=5,,,
    ∴ ,解得,
    在中,根据勾股定理可得: ,
    ∴点C的坐标为(3,4),
    ∵双曲线经过点C,
    ∴ ,
    故答案为:12.
    本题考查了菱形与反比例函数的综合运用,解题的关键在于合理作出辅助线,求得C点的坐标.
    22、
    【解析】
    如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.
    【详解】
    解:如图,
    连接AC交BD于点O,
    ∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,
    ∴△ABC是等边三角形∠ABO=30°,AO=2,
    ∴BO==2 ,
    ∴BD=2OB=4,
    ∴正方形BDEF的面积为1.
    故答案为1.
    本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.
    23、
    【解析】
    根据科学记数法的一般形式进行解答即可.
    【详解】
    解:0.0000077=.
    故答案为:.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)四边形ABEF为平行四边形,理由见解析.
    【解析】
    (1)利用AAS证明,再根据全等三角形的性质可得;
    (2)首先根据全等三角形的性质可得,再根据内错角相等两直线平行可得到,又,可证出四边形为平行四边形.
    【详解】
    证明:,



    即,
    在与中

    ≌,

    猜想:四边形ABEF为平行四边形,
    理由如下:由知≌,


    又,
    四边形ABEF为平行四边形.
    此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明.
    25、1093
    【解析】
    作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.
    【详解】
    解:如图,作BD⊥AC于D,
    由题意可得:BD=1400﹣1000=400(米),
    ∠BAC=30°,∠BCA=45°,
    在Rt△ABD中,
    ∵,即,
    ∴AD=400(米),
    在Rt△BCD中,
    ∵,即,
    ∴CD=400(米),
    ∴AC=AD+CD=400+400≈1092.8≈1093(米),
    答:隧道最短为1093米.
    本题考查解直角三角形、三角函数、特殊角的三角函数值等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.
    26、(1)S△DAC=1;(2)存在, 点P的坐标是(5,2);(3)S=﹣x2+7x(4≤x<6).
    【解析】
    (1)想办法求出A、D、C三点坐标即可解决问题;
    (2)存在.根据OB=PE=2,利用待定系数法即可解决问题;
    (3)利用梯形的面积公式计算即可;
    【详解】
    (1)当y=0时, x+2=0,
    ∴x=﹣4,点A坐标为(﹣4,0)
    当y=0时,﹣2x+12=0,
    ∴x=6,点C坐标为(6,0)
    由题意,解得,
    ∴点D坐标为(4,4)
    ∴S△DAC=×10×4=1.
    (2)存在,∵四边形BOEP为矩形,
    ∴BO=PE
    当x=0时,y=2,点B坐标为(0,2),
    把y=2代入y=﹣2x+12得到x=5,
    点P的坐标是(5,2).
    (3)∵S=(OB+PE)•OE
    ∴S=(2﹣2x+12)•x=﹣x2+7x(4≤x<6).
    本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    身高(m)
    人数
    种类
    一日票
    二日票
    三日票
    五日票
    七日票
    单价(元/张)
    20
    30
    40
    70
    90
    修造人
    笔试成绩/分
    面试成绩/分

    90
    88

    84
    92

    x
    90

    88
    86
    相关试卷

    2024-2025学年云浮市重点中学数学九上开学复习检测试题【含答案】: 这是一份2024-2025学年云浮市重点中学数学九上开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map