2024年安徽省合肥市庐江县汤池镇初级中学数学九年级第一学期开学学业水平测试试题【含答案】
展开
这是一份2024年安徽省合肥市庐江县汤池镇初级中学数学九年级第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于的方程的解是正数,则的取值范围是( )
A.B.C.D.
2、(4分)如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是( )
A.∠ABC=90°B.AC=BDC.∠OBC=∠OCBD.AO⊥BD
3、(4分)一次函数的图象经过点,且与轴,轴分别交于点、,则的面积是
A.B.1C.D.2
4、(4分)下列生态环保标志中,是中心对称图形的是
A.B.
C.D.
5、(4分)下面四个美术字中可以看作轴对称图形的是( )
A.B.C.D.
6、(4分)等腰三角形的底角是70°,则顶角为( )
A.B.C.D.
7、(4分)如图,在平面直角坐标系中,点在反比例函数的图象上.若,则自变量的取值范围是( )
A.B.C.且D.或
8、(4分)已知,则下列结论正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=中自变量x的取值范围是_____.
10、(4分)已知y+2与x-3成正比例,且当x=0时,y=1,则当y=4时,x的值为________.
11、(4分)若分式有意义,则实数x的取值范围是_______.
12、(4分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.
13、(4分)如图,在平面直角坐标系xOy中,直线l1,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则可以估计关于x的不等式k1x+b1>k2x+b2的解集为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.
(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;
(2)当B′在对角线AC上时,如图②所示,求BE的长.
15、(8分)某乳品公司向某地运输一批牛奶,若由铁路运输,每千克牛奶只需运费0.60元;若由公路运输,不仅每千克牛奶需运费0.30元,而且还需其他费用600元.设该公司运输这批牛奶为x千克,选择铁路运输时所需费用为y1元;选择公路运输时所需费用为y2元.
(1)请分别写出y1,y2与x之间的关系式;
(2)公司在什么情况下选择铁路运输比较合算?什么情况下选择公路运输比较合算?
16、(8分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,
(1)求证:四边形DBCF是平行四边形
(2)若∠A=30°,BC=4,CF=6,求CD的长
17、(10分)八年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名八年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了多少名学生?
(2)求扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数;
(3)请将条形统计图补充完整.
18、(10分)先化简,再求值: [其中,]
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.
20、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.
21、(4分)小敏统计了全班50名同学最喜欢的学科(每个同学只选一门学科).统计结果显示:最喜欢数学和科学的数别是13和10,最喜欢语文和英语的人数的频率分别是0.3和0.2,其余的同学最喜欢社会,则最喜欢社会的人数有______.
22、(4分)将二元二次方程化为两个一次方程为______.
23、(4分)在学校的社会实践活动中,一批学生协助搬运初一、二两个年级的图书,初一年级需要搬运的图书数量是初二年级需要搬运的图书数量的两倍.上午全部学生在初一年级搬运,下午一半的学生仍然留在初一年级(上下午的搬运时间相等)搬运,到放学时刚好把初一年级的图书搬运完.下午另一半的学生去初二年级搬运图书,到放学时还剩下一小部分未搬运,最后由三个学生再用一整天的时间刚好搬运完.如果这批学生每人每天搬运的效率是相同的,则这批学生共有人数为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.
25、(10分)问题情境:
平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直
线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
数学探究:
点C的坐标为______;
求点E的坐标及直线BE的函数关系式;
若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
26、(12分)已知,在中,,于点,分别交、于点、点,连接,若.
(1)若,求的面积.
(2)求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先求得分式方程的解,再由题意可得关于x的不等式,解不等式即得答案.
【详解】
解:解方程,得,
因为方程的解是正数,所以,
所以,解得.
故选D.
本题考查了分式方程的解法和不等式的解法,熟练掌握分式方程和不等式的解法是解题的关键.
2、D
【解析】
依据矩形的定义和性质解答即可.
【详解】
∵ABCD为矩形,
∴∠ABC=90°,AC=BD,OB=OD,AO=OC,故A、B正确,与要求不符;
∴OB=OC,
∴∠OBC=∠OCB,故C正确,与要求不符.
当ABCD为矩形时,AO不一定垂直于BD,故D错误,与要求相符.
故选:D.
本题主要考查的是矩形的性质,熟练掌握矩形的性质是解题的关键.
3、C
【解析】
由一次函数y=−3x+m的图象经过点P(−2,3),可求m得值,确定函数的关系式,进而可求出与x轴,y轴分别交于点A、B的坐标,从而知道OA、OB的长,可求出△AOB的面积.
【详解】
解:将点P(−2,3)代入一次函数y=−3x+m得:3=6+m,
∴m=−3
∴一次函数关系式为y=−3x−3,
当x=0时,y=−3;
当y=0是,x=−1;
∴OA=1,OB=3,
∴S△AOB=×1×3=,
故选:C.
考查一次函数图象上点的坐标特征,以及一次函数的图象与x轴、y轴交点坐标求法,正确将坐标与线段的长的相互转化是解决问题的前提和基础.
4、B
【解析】
根据中心对称图形的概念解答即可.
【详解】
A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、D
【解析】
根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.
【详解】
四个汉字中只有“善”字可以看作轴对称图形.
故选D.
本题考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.
6、A
【解析】
根据等腰三角形的性质可得另一底角的度数,再根据三角形内角和定理即可求得顶角的度数.
【详解】
解:∵等腰三角形的底角是70°,
∴其顶角=180°-70°-70°=40°,
故选:A.
此题主要考查等腰三角形的性质及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.
7、D
【解析】
首先根据点坐标求出函数解析式,然后列出不等式,反比例函数自变量不为0,分两类讨论,即可解题.
【详解】
解:由已知条件,将点代入反比例函数解析式,可得,
即函数解析式为
∵
∴
∴当时,解得;
当时,解得,即,
∴的取值范围是或
故答案为D.
此题主要考查反比例函数和不等式的性质,注意要分类讨论.
8、D
【解析】
根据不等式的性质,求出不等式的解集即可.
【详解】
解:不等式两边都除以2,
得:,
故选:D.
本题考查了解一元一次不等式,能根据题意得出不等式的解集是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥﹣2且x≠1
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x+2≥0且x﹣1≠0,
解得x≥﹣2且x≠1.
故答案为:x≥﹣2且x≠1.
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
10、-1
【解析】
解:设y+2=k(x-1),
∵x=0时,y=1,
∴k(0-1)=1+2,
解得:k=-1,
∴y+2=-(x-1),
即y=-x+1,
当y=4时,则4=-x+1,解得x=-1.
11、
【解析】
由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
解:∵分式有意义,
∴x-1≠2,即x≠1.
故答案为x≠1.
本题主要考查分式有意义的条件:分式有意义,分母不能为2.
12、.
【解析】
根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.
【详解】
设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.
故答案为:1000(1+x)2=1.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
13、x<﹣1
【解析】
观察函数图象得到当x<-1时,直线y=k1x+b1在直线y=k1x+b1的上方,于是可得到不等式k1x+b1>k1x+b1的解集.
【详解】
当x<-1时,k1x+b1>k1x+b1,
所以不等式k1x+b1>k1x+b1的解集为x<-1.
故答案为x<-1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)3
【解析】
(1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形
(2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.
【详解】
(1)证明:∵△BCE沿CE折叠,
∴BE=B'E,BC=B'C
∠BCE=∠B'CE
∵四边形ABCD是矩形
∴∠DCB=90°=∠B
∴∠BCE=45°且∠B=90°
∴∠BEC=∠BCE=45°
∴BC=BE
∵BE=B'E,BC=B'C
∴BC=BE=B'C=B'E
∴四边形BCB'E是菱形
又∵∠B=90°
∴四边形BCB'E是正方形
(2)∵AB=8,BC=6
∴根据勾股定理得:AC=10
∵△BCE沿CE折叠
∴B'C=BC=6,BE=B'E
∴AB'=4,AE=AB﹣BE=8﹣B'E
在Rt△AB'E中,AE2=B'A2+B'E2
∴(8﹣B'E)2=16+B'E2
解得:BE'=3
∴BE=B'E=3
本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.
15、(1)y1=0.6x, y2=0.3x+600;(2)当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.
【解析】
(1)选择铁路运输时所需的费用y1=每千克运费0.6元×牛奶重量,选择公路运输时所需的费用y2=每千克运费0.3元×牛奶重量+600元;
(2)当选择铁路运输比较合算时y1<y2,进而可得不等式0.6x<0.3x+600,当选择公路运输比较合算时,0.6x>0.3x+600,分别解不等式即可.
【详解】
解:(1)由题意得:y1=0.6x, y2=0.3x+600;
(2)当选择铁路运输比较合算时,0.6x<0.3x+600,
解得:x<2000,
∵x>0,
∴0<x<2000,
当选择公路运输比较合算时,0.6x>0.3x+600,
解得:x>2000,
答:当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.
此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.
16、(1)见解析(2)
【解析】
(1)根据对角线互相平分即可证明;
(2)由四边形DBCF是平行四边形,可得CF∥AB,DF∥BC,可得∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,由直角三角形的性质得到FG,CG,GD的长,由勾股定理即可求解.
【详解】
(1)∵E为CD的中点,
∴CE=DE,又EF=EB
∴四边形DBCF是平行四边形
(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC,
∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,
在Rt△FCG中,CF=6,
∴FG=CF=3,CG=3
∵DF=BC=4,
∴DG=1,
∴在Rt△DCG中,CD=
此题主要考查平行四边形的判定与性质,解题的关键是熟知含30°的直角三角形的性质.
17、(1)560人;(2)54°;(3)补图见解析.
【解析】
分析:(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
(2)由“主动质疑”占的百分比乘以360°即可得到结果;
(3)求出“讲解题目”的学生数,补全统计图即可;
详解:(1)根据题意得:224÷40%=560(名),
则在这次评价中,一个调查了560名学生;
故答案为:560;
(2)根据题意得:×360°=54°,
则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
故答案为:54;
(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
点睛:此题考查了频率(数)分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
18、
【解析】
分析:先化简,再把代入化简后的式子进行运算即可.
详解:
,
当x=时,
原式=
点睛:本题考查了分式的化简求值.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2或或
【解析】
分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.
【详解】
解:根据以为顶点的三角形是等腰三角形,可分三种情况
①若AB=BP
∵AB=2
∴BP=2
②若AB=AP
过A点作AE⊥BC交BC于E,
∵AB=AP,AE⊥BC
∴BE=EP
在Rt△ABE中
∵
∴AE=BE
根据勾股定理
AE2+BE2=AB2
即2BE2=4
解得BE=
∴BP=
③若BP=AP,则
过P点作PF⊥AB
∵AP=BP,PF⊥AB
∴BF=AB=1
在Rt△BFP中
∵
∴PF=BF=1
根据勾股定理
BP2=BF2+PF2
即BP2=1+1=2,
解得BP=
∵2,,都小于3
故BP=2或BP=或BP=.
本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.
20、
【解析】
运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.
【详解】
∵,
∴,
去分母得:,
解得:
经检验是原方程的解.
故答案为.
本题除了定义运算外,还考查简单的分式方程的解法.
21、1
【解析】
先根据频数=频率×数据总数,求出最喜欢语文和英语的人数,再由各组的频数和等于数据总数,求出最喜欢社会的人数.
【详解】
由题意,可知数据总数为50,最喜欢语文和英语的人数的频率分别是0.3和0.1,
∴最喜欢语文的有50×0.3=15(人),最喜欢英语的有50×0.1=10(人),
∴最喜欢社会的有50−13−10−15−10=1(人).
故填:1.
本题是对频率、频数灵活运用的综合考查.注意频率=.
22、和
【解析】
二元二次方程的中间项,根据十字相乘法,分解即可.
【详解】
解:,
,
∴,.
故答案为:和.
本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.
23、8
【解析】
设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,根据题意的等量关系建立方程组求出其解即可.
【详解】
解:设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,由题意得:
解得:x=8,即这批学生有8人
本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a和a建立方程是关键,运用整体思想是难点.
二、解答题(本大题共3个小题,共30分)
24、6
【解析】
由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE的长,由三角形的面积公式可求解.
【详解】
解:∵AC=6cm,BC=8cm,
∴,
∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,
∴AC=AE=6cm,∠DEB=90°
∴BE=10-6=4cm
设CD=DE=x,
则在Rt△DEB中,
,
解得:,
即DE=3.
∴△BDE的面积为:.
本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键.
25、 (1)(10,6);(2) ), ;(3)见解析.
【解析】
(1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,
,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.
【详解】
解:四边形OBCD是矩形,
,
,,
,
故答案为;
四边形OBCD是矩形,
,,,
设,
,
由折叠知,,,
在中,根据勾股定理得,,
,
在中,根据勾股定理得,,
,
,
,
设直线BE的函数关系式为,
,
,
,
直线BE的函数关系式为;
存在,理由:由知,,
,
能使以A,B,P,Q为顶点的四边形是平行四边形,
,
当BQ为的对角线时,
,
点B,P在x轴,
的纵坐标等于点A的纵坐标6,
点Q在直线BE:上,
,
,
,
当BQ为边时,
与BP互相平分,
设,
,
,
,
即:直线BE上是存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形,点或.
本题考核知识点:一次函数的综合运用. 解题关键点:熟记一次函数性质和特殊平行四边形的性质和判定.
26、(1)72;(2)见解析.
【解析】
(1)由得AB=CD,AD=BC,AB∥CD,则∠BAG=∠ACE,由得∠ACE+∠EAC=90°,则∠BAG+∠EAC=∠BAE =90°,由,可证得∠AFB=∠ACE,又因为BF=BC,可得BF=AC,可证△ABF≌△EAC,则AB=AE,的面积=AE∙CD=,在Rt△ABE中,由BE=12即可求得;
(2)由(1)知:△ABF≌△EAC,得△EAD≌△EAC,设CE=x,则AB=CD=2x,BF=AD=x,根据面积法计算AG的长,作高线GH,利用三角函数分别得EH和GH的长,利用勾股定理计算EG的长,代入结论化简可得结论.
【详解】
(1)解:∵,
∴AB=CD,AD=BC,AB∥CD,
∴∠BAG=∠ACE,
∵,
∴∠ACE+∠EAC=90°,
∴∠BAG+∠EAC=∠BAE =90°,
∵,,
∴∠AFB=∠ACE,∠AEC =∠BAE =90°,
∵BF=BC,,
∴BF=AC,
∴△ABF≌△EAC,
∴AB=AE,
∴的面积=AE∙CD=,
在Rt△ABE中, BE=12
∴2= =72,
∴的面积=72;
(2)证明:由(1)知:△ABF≌△EAC,
∵BF=BC=AD,
∴△EAD≌△EAC,
∴AF=DE=CE,AE=AB=2CE,
设CE=x,则AB=CD=2x,BF=AD=x,,
S△ABF=BF•AG=AF•AB,
x•AG=x•2x,
∴AG=x,
∴CG=x-x=x,
过G作GH⊥CD于H,
sin∠ECG== ,
∴GH=x,
cs∠ECG== ,
CH=x,
∴EH=x-x=,
∴EG== = ,
∴= = ,
∴GE=AG.
故答案为(1)72;(2)见解析.
本题考查平行四边形的性质、直角三角形的判定和性质,勾股定理、三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形,熟练掌握勾股定理与三角函数定义.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年安徽省合肥市四十二中学数学九上开学学业水平测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽省合肥市科大附中数学九年级第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省合肥市庐江县汤池镇初级中学2023-2024学年八年级数学下册期中测试卷(人教版),共21页。试卷主要包含了二次根式有意义的条件是,下列运算中,正确的是等内容,欢迎下载使用。