2024年安徽省合肥市四十二中学铁国际城校区九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为( )
A.cmB.4 cmC.cmD.2cm
2、(4分)正比例函数y= -2x的图象经过( )
A.第三、一象限B.第二、四象限C.第二、一象限D.第三、四象限
3、(4分)已知,则下列不等式中不正确的是( )
A.B.C.D.
4、(4分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
A.(x+3)2=1B.(x﹣3)2=1
C.(x+3)2=19D.(x﹣3)2=19
5、(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为( )
A.x>-3B.x>0C.x<-2D.x<0
6、(4分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°
C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形
7、(4分)下列各式从左到右的变形中,是因式分解的为( )
A.x(a-b)=ax-bxB.x2-1=(x-1)(x+1)
C.x2-1+y2=(x-1)(x+1)+y2D.ax+bx+c=x(a+b)+c
8、(4分)在下列图形中,既是轴对称图形又是中心对称图形的是 ( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在中,,,,则__________.
10、(4分)等边三角形中,两条中线所夹的锐角的度数为_____.
11、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数均是8.5环,方差分别是:,,则射击成绩较稳定的是______(填“甲”或“乙”).
12、(4分)若,则________.
13、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.
15、(8分)已知关于x的一元二次方程x1﹣3x+k=0方程有两实根x1和x1.
(1)求实数k的取值范围;
(1)当x1和x1是一个矩形两邻边的长且矩形的对角线长为,求k的值.
16、(8分)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.
(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;
(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少.
17、(10分)对于实数、,定义一种新运算“※”为:.
例如:,
.
(1)化简:.
(2)若关于的方程有两个相等的实数根,求实数的值.
18、(10分)某乡镇组织300名干部、群众参加义务植树活动,下表是随机抽出的50名干部、群众义务植树的统计,根据图中的数据回答下列问题:
(1)这50个人平均每人植树多少棵?植树棵数的中位数是多少?
(2)估计该乡镇本次活动共植树多少棵?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.
20、(4分)已知一次函数的图象经过点,则不等式的解是__________.
21、(4分)点P(﹣3,4)到x轴和y轴的距离分别是_____.
22、(4分)如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为 _____________
23、(4分)如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了从甲、乙两名学生中选拨一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶6次,命中的环数如下:
甲:7,8,6,10,10,7
乙:7, 7,8,8,10,8,
如果你是教练你会选拨谁参加比赛?为什么?
25、(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.
(1)求的值;
(2)过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
26、(12分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.
(1)求该商店3月份这种商品的售价是多少元?
(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用对角线性质求出AO=4cm,又根据∠AOD=120°,易知△ABO为等边三角形,从而得到AB的长度.
【详解】
AC、BD为矩形ABCD的对角线,所以AO=AC=4cm,BO=BD=AC=4cm,
又因为∠AOD=120°,所以∠AOB=60°,所以三角形ABO为等边三角形,
故AB=AO=4cm,故选B.
本题考查矩形的对角线性质,本题关键在于能够证明出三角形是等边三角形.
2、B
【解析】
根据正比例函数的图象和性质,k>0,图象过第一,三象限,k<0,图象过第二,四象限,即可判断.
【详解】
∵正比例函数y= -2x,k<0,所以图象过第二,四象限,
故选:B.
考查了正比例函数的图象和性质,理解和掌握正比例函数的图象和性质是解题关键,注意系数的正负号决定了图象过的象限.
3、D
【解析】
根据不等式的性质逐项分析即可.
【详解】
A. ∵,∴ ,故正确;
B. ∵,∴,故正确;
C. ∵,∴,故正确;
D. ∵,∴,故不正确;
故选D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、D
【解析】
方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
【详解】
方程移项得:,
配方得:,
即,
故选D.
5、A
【解析】
由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.
【详解】
从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.
故选:A.
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
6、B
【解析】
直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.
【详解】
解:A、∵∠C+∠B+∠A=180°(三角形内角和定理),∠C﹣∠B=∠A,∴∠C+∠B+(∠C﹣∠B)=180°,∴2∠C=180°,∴∠C=90°,故该选项正确,
B、如果c2=b2﹣a2,则△ABC是直角三角形,且∠B=90°,故该选项错误,
C、化简后有c2=a2+b2,则△ABC是直角三角形,故该选项正确,
D、设三角分别为5x,3x,2x,根据三角形内角和定理可得,5x+3x+2x=180°,则x=18°,所以这三个角分别为:90度,36度,54度,则△ABC是直角三角形,故该选项正确.
故选B.
考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法.
7、B
【解析】
根据因式分解的的定义即可完成本题。
【详解】
解:A选项没有写成因式积的形式,故A错;
B选项写成因式积的形式,故B正确;
C选项没有写成因式积的形式,故C错;
D选项没有写成因式积的形式,故D错;
故答案为B.
本题考查了因式分解,准确的理解因式分解的定义是解答本题的关键。
8、C
【解析】
解:A、是轴对称图形但不是中心对称图形,故本选项错误;
B、既不是轴对称图形也不是中心对称图形,故本选项错误;
C、既是轴对称图形又是中心对称图形,故本选项正确;
D、中心对称图形是但不是轴对称图形,故本选项错误;
故选C
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据直角三角形中,30°所对的直角边是斜边的一半进行计算.
【详解】
∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
∴AB=1BC=1.
故答案为:1.
此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.
10、60°
【解析】
如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=∠ABC=30°,再根据三角形外角的性质即可得出结论.
【详解】
如图,
∵等边三角形ABC,AD、BE分别是中线,
∴AD、BE分别是角平分线,
∴∠1=∠2=∠ABC=30°,
∴∠3=∠1+∠2=60°.
本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.
11、甲
【解析】
根据方差的性质即可求解.
【详解】
∵<,∴成绩较稳定的是甲
此题主要考查利用方差判断稳定性,解题的关键是熟知方差的性质.
12、
【解析】
由,得到a=b,代入所求的代数式,即可解决问题.
【详解】
∵,
∴a=b,
∴,
故答案为:.
该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.
13、()n.
【解析】
第1个正方形的边长是1,对角线长为;第二个正方形的边长为,对角线长为()2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.
【详解】
第1个正方形的边长是1,对角线长为;
第二个正方形的边长为,对角线长为()2=2
第3个正方形的边长是2,对角线长为2=()3;…,
∴第n个正方形的对角线长为()n;
故答案为()n.
本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、AB=4,CD=.
【解析】
根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.
【详解】
解:在Rt△ABC中,∠ACB=90°
根据勾股定理,得
AB2=AC2+BC2=16,
∴AB=4,
又CD⊥AB
∴AB•CD=AC•BC
∴4CD=2×2
即CD=.
本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.
15、(1);(1)
【解析】
试题分析:(1)求出△的值,根据已知得出不等式,求出即可;
(1)根据根与系数的关系得出x1+x1=3,x1•x1=k,根据已知得出x11+x11=()1,变形后代入求出即可.
试题解析:(1)∵关于x的一元二次方程x1-3x+k=0有两个实根x1和x1,
∴△=(-3)1-4k≥0,
解得:k≤,
即实数k的取值范围为k≤;
(1)由根与系数的关系得:x1+x1=3,x1•x1=k,
∵x1和x1是一个矩形两邻边的长且矩形的对角线长为,
∴x11+x11=()1,
(x1+x1)1-1x1•x1=5,
∴9-1k=5,
解得:k=1.
16、 (1)证明见解析;(2) 四边形ADEC的周长为6+3.
【解析】
(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;
(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.
【详解】
(1)证明:如答图,连接CD交AE于F.
∵四边形PCOD是平行四边形,
∴CF=DF,OF=PF.
∵PE=AO,
∴AF=EF.
又∵CF=DF,
∴四边形ADEC为平行四边形.
(2)解:当点P运动的时间为秒时,
OP=,OC=3,
则OE=.
由勾股定理,得AC==3,
CE==.
∵四边形ADEC为平行四边形,
∴四边形ADEC的周长为(3+)×2=6+3.
本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.
17、(1);(2)的值为1.
【解析】
(1)根据定义运算列出分式,然后进行化简计算;
(2)根据定义运算列出方程并进行化简整理,然后利用一元二次方程根的判别式列方程求解即可.
【详解】
解:(1)
(2)由题意得:
化简整理得:
由题意知:且
化简得:
∴(舍),
∴的值为1.
本题考查分式的化简和一元二次方程根的判别式,正确理解题意准确进行计算是解题关键.
18、(1)5,5;(2)1500.
【解析】
(1)利用加权平均数求得平均数即可;将所有数据从大到小排列即可得到中位数;
(2)根据(1)中所求得出植树总数即可.
【详解】
(1)平均数=(棵),
∵共50人,
∴中位数是第25和26个数的平均数,
∴中位数=(5+5)(棵),
(2)3005=1500(棵),
∴该乡镇本次活动共植树1500棵.
此题考查加权平均数、中位数的确定、样本估计总体,正确理解题意即可计算解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣9≤x<﹣1
【解析】
根据题意可以列出相应的不等式,解不等式求出x的取值范围即可得答案.
【详解】
∵[x]表示不大于x的最大整数,[]=﹣2,
∴﹣2≤<﹣1,
解得:﹣9≤x<﹣1.
故答案为:﹣9≤x<﹣1.
本题考查了一元一次不等式组和一元一次不等式组的整数解的应用,能根据题意得出关于x的不等式组是解题关键.
20、
【解析】
将点P坐标代入一次函数解析式得出,如何代入不等式计算即可.
【详解】
∵一次函数的图象经过点,
∴,即:,
∴可化为:,
即:,
∴.
故答案为:.
本题主要考查了一次函数与不等式的综合运用,熟练掌握相关概念是解题关键.
21、4;1.
【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.
【详解】
点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.
故答案为:4;1.
本题考查了点的坐标,关键是正确确定P点位置.
22、3
【解析】
∵AB=AC,AD平分∠BAC,
∴D是BC中点.
∵E是AB的中点,
∴DE是△ABC的中位线,
.
23、3
【解析】
首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.
【详解】
解:∵,
∴AD=BC,AD∥BC,
∴和的高相等,
设其高为,
又∵,
∴BE=3BC=3AD,
又∵,
∴
故答案为3.
此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.
二、解答题(本大题共3个小题,共30分)
24、应选乙参加比赛.
【解析】
分析:分别求出甲、乙两名学生6次射靶环数的平均数和方差,然后进行比较即可求得结果.
详解:(1)甲=(7+8+6+10+10+7)=8;
S甲2= [(7-8)2+(8-8)2+(6-8)2+(10-8)2+(10-8)2+(7-8)2]=;
乙=(7+7+8+8+10+8)=8;
S乙2=[(7-8)2+(7-8)2+(8-8)2+(8-8)2+(10-8)2+(8-8)2]=1;
∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,
∴乙同学的成绩较稳定,应选乙参加比赛.
点睛:本题考查一组数据的方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.
25、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
26、(1)该商店3月份这种商品的售价是40元;(2)该商店4月份销售这种商品的利润是990元.
【解析】
(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;
(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.
【详解】
(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,
根据题意得:
,
解得:x=40,
经检验,x=40是原分式方程的解.
答:该商店3月份这种商品的售价是40元.
(2)设该商品的进价为y元,
根据题意得:(40﹣a)×=900,
解得:a=25,
∴(40×0.9﹣25)×=990(元).
答:该商店4月份销售这种商品的利润是990元.
本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.
题号
一
二
三
四
五
总分
得分
批阅人
植树棵树
3
4
5
6
8
人数
8
15
12
7
8
安徽省合肥市四十二中学铁国际城校区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份安徽省合肥市四十二中学铁国际城校区2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法正确的是,下列二次根式是最简二次根式的是等内容,欢迎下载使用。
2023-2024学年安徽省合肥市四十二中学铁国际城校区数学八上期末复习检测模拟试题含答案: 这是一份2023-2024学年安徽省合肥市四十二中学铁国际城校区数学八上期末复习检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是假命题的是,下列图案中,是轴对称图形的是,若,则的值是,下列图形中是轴对称图形的个数是等内容,欢迎下载使用。
2023-2024学年安徽省合肥市四十二中学铁国际城校区八上数学期末联考模拟试题含答案: 这是一份2023-2024学年安徽省合肥市四十二中学铁国际城校区八上数学期末联考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,若点A,下列运算中,错误的是等内容,欢迎下载使用。