2024年安徽省淮南地区九上数学开学考试模拟试题【含答案】
展开
这是一份2024年安徽省淮南地区九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=6x+1的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )
A.(3,1)B.(3,-1)C.(1,-3)D.(1,3)
3、(4分)一次函数y=kx+b的图象经过第一、三、四象限,则( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
4、(4分)下列各数中,与的积为有理数的是( )
A.B.C.D.
5、(4分)如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为( )
A.B.C.D.
6、(4分)下列说法中正确的是( )
A.在中,.
B.在中,.
C.在中,,.
D.、、是的三边,若,则是直角三角形.
7、(4分)若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在( )
A.x轴上B.第三象限C.y轴上D.第四象限
8、(4分)下列计算正确的是( )
A.3﹣2=1B.(1﹣)(1+)=﹣1
C.(2﹣)(3+)=4D.(+)2=5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图象过点,那么此一次函数的解析式为__________.
10、(4分)如图,正方形的边长为5,,连结,则线段的长为________.
11、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
12、(4分)如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度.
13、(4分)反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,
(1)画出一次函数y2=x+3的图象;
(2)求点C坐标;
(3)如果y1>y2,那么x的取值范围是______.
15、(8分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.
16、(8分)已知的三边长分别为,求证:是直角三角形.
17、(10分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE
(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.
18、(10分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.
20、(4分)菱形的两条对角线长分别为10cm和24cm,则该菱形的面积是_________;
21、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
22、(4分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.
23、(4分)若关于x的分式方程=2a无解,则a的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)
25、(10分)如图,为等边三角形,, 相交于点, 于点,
(1)求证:
(2)求的度数.
26、(12分)某单位计划在暑假阴间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七折优惠;乙旅行社表示可先免去一位游客的费用,其余游客七五折优惠.设该单位参加旅游的人数是x人.选择甲旅行社时,所需费用为元,选择乙旅行社时,所需费用为元.
(1)写出甲旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(2)写出乙旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(3)该单位选择哪一家旅行社支付的旅游费用较少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.
解:∵一次函数y=6x+1中k=6>0,b=1>0,
∴此函数经过一、二、三象限,
故选D.
2、B
【解析】
首先连接AB交OC于点D,由四边形OACB是菱形,可得,,,易得点B的坐标是.
【详解】
连接AB交OC于点D,
四边形OACB是菱形,
,,,
点B的坐标是.
故选B.
此题考查了菱形的性质:菱形的对角线互相平分且垂直解此题注意数形结合思想的应用.
3、B
【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【详解】
由一次函数y=kx+b的图象经过第一、三、四象限
又由k>1时,直线必经过一、三象限,故知k>1
再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.
故选:B.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
4、C
【解析】
根据实数运算的法则对各选项进行逐一计算作出判断.
【详解】
解: A、,是无理数,故本选项错误;
B、,是无理数,故本选项错误;
C、,是有理数,故本选项正确;
D、,是无理数,故本选项错误.
故选C.
5、C
【解析】
设D′C′与BC的交点为E,连接AE,利用“HL”证明Rt△AD′E和Rt△ABE全等,根据全等三角形对应角相等∠BAE=∠D′AE,再根据旋转角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根据阴影部分的面积=正方形ABCD的面积-四边形ABED′的面积,列式计算即可得解.
【详解】
解:如图,D′C′与BC的交点为E,连接AE,
在Rt△AD′E和Rt△ABE中,
∵,
∴Rt△AD′E≌Rt△ABE(HL),
∴∠BAE=∠D′AE,
∵旋转角为30°,
∴∠BAD′=60°,
∴∠BAE=×60°=30°,
∴BE=1×=,
∴阴影部分的面积=1×12×(×1×)=1.
故选:C.
本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
6、D
【解析】
根据勾股定理以及勾股定理的逆定理逐项分析即可.
【详解】
A.因为不一定是直角三角形,故不正确;
B.没说明哪个角是直角,故不正确;
C. 在中,,则,故不正确;
D.符合勾股定理的逆定理,故正确.
故选D.
本题考查了勾股定理,以及勾股定理逆定理,熟练掌握定理是解答本题的关键. 直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
7、D
【解析】
让点A的纵坐标加3后等于0,即可求得m的值,进而求得点A的横纵坐标,即可判断点A所在象限.
【详解】
∵把点A(﹣5m,2m﹣1)向上平移3个单位后得到的点在x轴上,∴2m﹣1+3=0,解得:m=﹣1,∴点A坐标为(5,﹣3),点A在第四象限.
故选D.
本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.
8、B
【解析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
A、此选项错误;
B、此选项正确;
C、 此选项错误;
D、,此选项错误;
故选:B.
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
用待定系数法即可得到答案.
【详解】
解:把代入得,解得,
所以一次函数解析式为.
故答案为
本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.
10、
【解析】
延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.
【详解】
解:如图,延长BG交CH于点E,
∵正方形的边长为5,,
∴AG2+BG2=AB2,
∴∠AGB=90°,
在△ABG和△CDH中,
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,
∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,
故答案为:
本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.
11、3,5.4,6,6.5
【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
【详解】
点在上,时,秒;
点在上,时,过点作交于点,
点在上,时,
④点在上,时,过点作交于点,
为的中位线
,
本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
12、
【解析】
利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.
【详解】
解:在矩形AEFG中,∠AEF=90°
∵∠AEB+∠AEF+∠CEF=180°,
∠CEF=15°
∴∠AEB=75°
∵∠BAE+∠B+∠AEB=180°
∠BAE=40°
∴∠B=65°
∵∠D=∠B
∴∠D=65°
故答案为65°
考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.
13、没有实数根
【解析】
分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.
详解:∵反比例函数y=的图象位于一、三象限,
∴a+4>0,
∴a>-4,
∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,
∴1xy>11,
即a+4>6,a>1
∴a>1.
∴△=(-1)1-4(a-1)×=1-a<0,
∴关于x的方程(a-1)x1-x+=0没有实数根.
故答案为:没有实数根.
点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
【解析】
(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;
(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;
(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.
【详解】
解:(1)∵y1=x+3,
∴当y1=0时,x+3=0,解得x=﹣4,
当x=0时,y1=3,
∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).
图象如下所示:
(1)解方程组,得,
则点C坐标为(﹣1,);
(3)如果y1>y1,那么x的取值范围是x<﹣1.
故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.
15、BC=1.
【解析】
根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,
∵点E为AC的中点,
∴DE=CE=AC=.
∵△CDE的周长为24,
∴CD=9,
∴BC=2CD=1.
此题考查等腰三角形的性质和直角三角形斜边上的中线,解题关键在于等腰三角形的性质得出AD⊥BC
16、见解析.
【解析】
根据勾股定理的逆定理解答即可.
【详解】
证明:
,
以为三边的是直角三角形.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
17、(1)证明见解析;(2)1.
【解析】
分析:(1)只要证明三个角是直角即可解决问题;
(2)作OF⊥BC于F.求出EC、OF的长即可;
详解:(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题
18、(1) ;(2)2400元.
【解析】
(1)根据题意可得A种塑料袋每天获利(2.4-2)x,B种塑料袋每天获利(3.6-3)(5000-x),共获利y元,列出y与x的函数关系式:y=(2.4-2)x+(3.6-3)(5000-x).
(2)根据题意得2x+3(4500-x)≤10000,解出x的范围.得出y随x增大而减小.
【详解】
(1)由题意得:=
(2)由题意得:≤12000
解得:≥3000
在函数中,<0
∴随的增大而减小
∴当=3000时,每天可获利最多,最大利润=2400
∴该厂每天最多获利2400元.
此题主要考查了一次函数的应用以及不等式组解法,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.
【详解】
解:由翻折可知:DA′=A′E=4,
∵∠DA′E=90°,
∴DE=,
∵A′C′=2=DC′,C′G∥A′E,
∴DG=GE=,
故答案为:.
本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
20、110cm1.
【解析】
试题解析:S=×10×14=110cm1.
考点:菱形的性质.
21、2.1
【解析】
连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接.
,,,
,
,,,
四边形是矩形,
,
由垂线段最短可得时,线段的值最小,
此时,,
即,
解得.
故答案为:2.1.
本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.
22、
【解析】
根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等, 根据概率公式计算即可 .
【详解】
∵圆中的黑色部分和白色部分关于圆心中心对称,
∴圆中的黑色部分和白色部分面积相等,
∴在圆内随机取一点, 则此点取黑色部分的概率是,
故答案为.
考查的是概率公式、 中心对称图形, 掌握概率公式是解题的关键 .
23、1或
【解析】
分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.
详解:去分母得:
x-3a=2a(x-3),
整理得:(1-2a)x=-3a,
当1-2a=0时,方程无解,故a=;
当1-2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为1或.
点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.
详解:
已知:如图,在四边形ABCD中,AB=CD,AD=BC.
求证:四边形ABCD是平行四边形.
证明:连结AC
在ΔABC和ΔCDA中.
∵AB=CD,BC=DA,AC=CA,
∴ ΔABC≌ΔCDA,
∴ ∠BAC=∠DCA,∠ACB=∠CAD,
∴ AB//CD,AD//BC,
∴四边形ABCD是平行四边形.
点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.
25、(1)见解析;(2)∠BPQ =60°
【解析】
(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;
(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质求得∠BPQ=60°;
【详解】
(1)证明:∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠C=60°,
在△AEB与△CDA中,
∴△AEB≌△CDA(SAS);
(2)解:由(1)知,△AEB≌△CDA,则∠ABE=∠CAD,
∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,
∴∠BPQ=∠BAD+∠ABD=60°;
本题考查了全等三角形的判定与性质、等边三角形的性质,在判定三角形全等时,关键是选择恰当的判定条件.
26、(1);(2);(3)当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社,见解析.
【解析】
(1)根据甲旅行社的优惠方式,可计算出y1与x之间的关系.
(2)根据乙旅行社的优惠方式,可计算出y2与x之间的关系.
(3)根据(1)(2)的表达式,利用不等式的知识可得出人数多少克选择旅行社.
【详解】
(1);
(2)根据乙旅行社的优惠方式;;
(3)①甲社总费用=乙社总费用的情况,此时,解得:;
即当时,两家费用一样.
②甲社总费用多于乙社总费用的情况:,
解不等式得:,
即当时,乙旅行社费用较低.
③甲社总费用少于乙社总费用的情况,此时
解得:
即当时,甲旅行社费用较低.
答:当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社.
此题考查了一次函数的应用,解答本题的关键是得出甲乙旅行社收费与人数之间的关系式,利用不等式的知识解答,难度一般.
题号
一
二
三
四
五
总分
得分
成本(元/个)
售价 (元/个)
2
2.4
3
3.6
相关试卷
这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西省(同盛地区)九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽省淮南市西部地区数学九上开学学业水平测试模拟试题【含答案】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。