2024年安徽省宁国市宁阳学校九年级数学第一学期开学质量检测试题【含答案】
展开这是一份2024年安徽省宁国市宁阳学校九年级数学第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件属于必然事件的是()
A.抛掷两枚硬币,结果一正一反
B.取一个实数的值为 1
C.取一个实数
D.角平分线上的点到角的两边的距离相等
2、(4分)已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是( )
A.6 B.7 C.8 D.9
3、(4分)如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若,DE=3,则BC的长度是( )
A.6B.8C.9D.10
4、(4分)已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为 ( )
A.y= x+2B.y= ﹣x+2C.y= x+2或y=﹣x+2D.y= - x+2或y = x-2
5、(4分)已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为( )
A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)
6、(4分)如图,在中,分别以点A,C为圆心,大于长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若,,则的周长是( )
A.7B.8C.9D.10
7、(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积可以表示为( )
A.4S1B.4S2C.4S2+S3D.2S1+8S3
8、(4分)直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是( )
A.5B.6C.6.5D.13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在▱ABCD中,E是BC边的中点,F是对角线AC的中点,若EF=5,则DC的长为_____.
10、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.
11、(4分)使有意义的x的取值范围是 .
12、(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为_____.
13、(4分)已知函数是关于的一次函数,则的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算
(1)
(2);
15、(8分)直线与x轴交于点A,与y轴交于点B,
(1)求点A、B的坐标,画出直线AB;
(2)点C在x轴上,且AC=AB,直接写出点C的坐标.
16、(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.
(1)用关于x的代数式分别表示无盖纸盒的长和宽.
(2)若纸盒的底面积为600cm2,求纸盒的高.
(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.
17、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
(1)根据题意,填写下表:
(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
18、(10分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).
(1)求m的值及l1所对应的一次函数表达式;
(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察下列式子:
当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.
20、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
21、(4分)不等式的正整数解的和______;
22、(4分)如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.
23、(4分)某次越野跑中,当小明跑了1600m时,小刚跑了1400m,小明和小刚在此后时间里所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑全程为________ m.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,AB=AC,AD⊥BC于D,点E,F分别是AB,AC的中点.求证:四边形AEDF是菱形.
25、(10分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.
(1)△BEC是否为等腰三角形?证明你的结论;
(2)若AB=2,∠DCE=22.5°,求BC长.
26、(12分)如图,的直角边OB在x轴的正半轴上,反比例函数的图象经过斜边OA的中点D,与直角边AB相交于点C.
①若点,求点C的坐标:
②若,求k的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
必然事件就是一定发生的事件,据此判断即可解答.
【详解】
A、可能会出现两正,两反或一正一反或一反一正等4种情况,故错误,不合题意;
B、x应取不等于0的数,故错误,不合题意;
C、取一个实数,故错误,不合题意;
D、正确,属于必然事件,符合题意;
故选:D.
本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、C
【解析】
根据这组数据是从大到小排列的,找出最中间的数即可.
【详解】
解:∵原数据从大到小排列是:9,9,8,8,7,6,5,
∴处于最中间的数是8,
∴这组数据的中位数是8.
故选C.
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
3、C
【解析】
根据平行线分线段成比例的性质,由,可得,根据相似三角形的判定与性质,由DE∥BC可知△ADE∽△ABC,可得,由DE=3,求得BC=9.
故选:C.
4、C
【解析】
先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.
【详解】
∵一次函数y=kx+b(k≠0)图象过点(0,1),
∴b=1,
令y=0,则x=-,
∵函数图象与两坐标轴围成的三角形面积为1,
∴×1×|-|=1,即||=1,
解得:k=±1,
则函数的解析式是y=x+1或y=-x+1.
故选C.
5、D
【解析】
由点P位于x轴上方可得点P的纵坐标大于0,所以点P的纵坐标为2,由于点P相对于y轴的位置不确定,所以点P的横坐标为5或﹣5.
【详解】
由题意得P(5,2)或(﹣5,2).
故选D.
本题主要考查点的坐标,将点到坐标轴的距离转化为相应的坐标是解题的关键.
6、A
【解析】
利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.
【详解】
解:由作法得MN垂直平分AC,如图,
∴DA=DC,
∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.
故选:A.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
7、A
【解析】
设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.
【详解】
设等腰直角三角形的直角边为a,正方形边长为c,
则S2=(a+c)(a-c)=a2-c2,
∴S2=S1-S3,
∴S3=2S1-2S2,
∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.
故选A.
本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系
8、C
【解析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解
【详解】
∵直角三角形两直角边长为5和12
∴斜边=13
∴此直角三角形斜边上的中线的长=6.5
故答案为:C
此题考查直角三角形斜边上的中线和勾股定理,解题关键在于掌握直角三角形斜边上的中线等于斜边的一半
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB=1即可.
【详解】
解:∵E是BC边的中点,F是对角线AC的中点,
∴EF是△ABC的中位线,
∴AB=2EF=1,
又∵四边形ABCD是平行四边形,
∴AB=CD,
∴CD=1.
故答案为:1
本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.
10、乙
【解析】
根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.
【详解】
解:∵0.5>0.4
∴S甲2>S乙2,则成绩较稳定的同学是乙.
故答案为:乙.
此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.
11、
【解析】
根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可.
【详解】
根据二次根式的定义可知被开方数必须为非负数,列不等式得:
x+1≥0,
解得x≥﹣1.
故答案为x≥﹣1.
本题考查了二次根式有意义的条件
12、2﹣2
【解析】
如图所示:
因为∠PBO=∠POA,
所以∠BPO=90°,则点P是以OB为直径的圆上.
设圆心为M,连接MA与圆M的交点即是P,此时PA最短,
∵OA=4,OM=2,
∴MA=
又∵MP=2,AP=MA-MP
∴AP=.
13、-1
【解析】
根据一次函数的定义,可得答案.
【详解】
解:由是关于x的一次函数,得
,解得m=-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
三、解答题(本大题共5个小题,共48分)
14、(1)+;(2)x1=5,x2=−1.
【解析】
(1)先算乘法,再合并同类二次根式即可;
(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)原式=3−+2−2
=+;
(2)x2−4x−5=0,
(x−5)(x+1)=0,
x−5=0,x+1=0,
x1=5,x2=−1.
本题考查了二次根式的混合运算和解一元二次方程,能正确运用运算法则进行计算是解此题的关键.
15、 (1)如图所示见解析;(2)C(1-,0)或C(1+,0)
【解析】
分析:令y=0求出与x轴交于点A,令x=0求出与y轴交于点B.然后用两点式画出直线AB即可;
(2)先利用勾股定理求出AB的长,然后分点C在点A的左侧和右侧两种情况写出点C的坐标即可.
详解:(1)令y=0,得x=1,∴A(1,0),
令x=0,得y=2,∴B(0,-2),
画出直线AB,如图所示:
(2)C(1-,0)或C(1+,0)
点睛:本题考查了求一次函数与坐标轴的交点,两点法画函数图像,勾股定理,坐标与图形及分类讨论的数学思想,求出点A与点B的坐标是解(1)的关键,分类讨论是解(2)的关键.
16、(1)长,宽,(2)高为5cm,(3)x的取值范围为:,y的最小值为1.
【解析】
根据长两个小正方形的长,宽两个小正方形的宽即可得到答案,
根据面积长宽,列出关于x的一元二次方程,解之即可,
设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,关于x的一元一次不等式,解之即可,根据面积长宽,列出y关于x的反比例函数,根据反比例函数的增减性求最值.
【详解】
根据题意得:长,宽,
根据题意得:
整理得:
解得:舍去,,
纸盒的高为5cm,
设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,
,
,
解得:,
根据题意得:,
,
y随着x的增大而减小,
当取到最大值时,y取到最小值,
即当时,,
x的取值范围为:,y的最小值为1.
本题考查二次函数的应用,一元二次方程的应用,解题的关键:(2)根据等量关系列出一元二次方程(3)根据数量关系列出不等式和反比例函数并利用反比例函数的增减性求最值.
17、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
【解析】
(1)根据甲、乙公司的收费方式,求出y值即可;
(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
【详解】
解:(1)当x=0.5时,y甲=22×0.5=11;
当x=1时,y乙=16×1+3=19;
当x=3时,y甲=22+15×2=52;
当x=3时,y甲=22+15×3=1.
故答案为:11;19;52;1.
(2)当0<x≤1时,y1=22x;
当x>1时,y1=22+15(x-1)=15x+2.
∴
y2=16x+3(x>0);
(3)当x>3时,
当y1>y2时,有15x+2>16x+3,
解得:x<3;
当y2=y2时,有15x+2=16x+3,
解得:x=3;
当y1<y2时,有15x+2<16x+3,
解得:x>3.
∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
18、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;
(2)根据函数图象,结合C点的坐标即可求得.
【详解】
解:(1)把C(m,3)代入正比例函数y=x,可得3=m,
解得m=1,
∴C(1,3),
∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),
∴ 解得,
∴l1的解析式为y=-x+5;
(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.
故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2n,n2﹣1,n2+1.
【解析】
由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
【详解】
解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
∴勾股数a=2n,b=n2﹣1,c=n2+1.
故答案为2n,n2﹣1,n2+1.
考点:勾股数.
20、x<1
【解析】
分析:
根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.
详解:
由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,
∵点A的坐标为(1,3),
∴不等式bx<ax+4的解集为:x<1.
故答案为x<1.
点睛:“知道不等式bx<ax+4的解集是函数图象中:直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围”是解答本题的关键.
21、3.
【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.
【详解】
解:解得;x<3,;则正整数解有2和1;
所以正整数解的和为3;故答案为3.
本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
22、1
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5(cm);
∴AD+BD-AB=1AD-AB=10-8=1cm;
故橡皮筋被拉长了1cm.
故答案是:1.
此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.
23、1
【解析】
根据函数图象可以列出相应的二元一次方程组,从而可以解答本题.
【详解】
设小明从1600处到终点的速度为a米/秒,小刚从1400米处到终点的速度为b米/秒,
由题意可得:小明跑了100秒后还需要200秒到达终点,而小刚跑了100秒后还需要100秒到达终点,则
,
解得:,
故这次越野跑的全程为:1600+300×2=1600+600=1(米),
即这次越野跑的全程为1米.
故答案为:1.
本题考查了一次函数的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组,利用数形结合的思想解答问题.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形.
【详解】
解:∵AD⊥BC,点E、F分别是AB、AC的中点,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,点E、F分别是AB、AC的中点,
∴AE=AF,
∴AE=AF=DE=DF,
∴四边形AEDF是菱形.
本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形.
25、(1)△BEC是等腰三角形,见解析;(2)2
【解析】
(1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.
【详解】
解:(1)△BEC是等腰三角形;理由如下:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,即△BEC是等腰三角形.
(2)∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∵∠DCE=22.5°,
∴∠DEB=2×(90°-22.5°)=135°,
∴∠AEB=180°-∠DEB=45°,
∴∠ABE=∠AEB=45°,
∴AE=AB=2,
由勾股定理得:BC=BE===2,
答:BC的长是2.
本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出∠BEC=∠ECB是解决问题的关键.
26、①(4,);②k=12
【解析】
①根据点D是OA的中点即可求出D点坐标,再将D的坐标代入解析式求出解析式,从而得到C的坐标;
②连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD的面积,再根据条件列出方程求k的值即可。
【详解】
解:①∵D是OA的中点,点A的坐标为(4,6),
∴D(,),即(2,3)
∴k=2×3=6
∴解析式为
∵A的坐标为(4,6),AB⊥x轴
∴把x=4代入得y=
∴C的坐标为(4,)
②连接OC,
设A(a,b),则D(,)
可得k=,ab=4k
∴解析式为
∴B(a,0),C(a,)
∴
∴
解得:k=12
本题考查了一次函数的性质,要正确理解参数k的几何意义,能用代数式表达三角形OCD的面积是解题的关键。
题号
一
二
三
四
五
总分
得分
快递物品重量(千克)
0.5
1
3
4
…
甲公司收费(元)
22
…
乙公司收费(元)
11
51
67
…
相关试卷
这是一份2024年安徽省宁国市宁阳学校数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年安徽省宁国市宁阳学校九年级数学第一学期期末学业水平测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,为一元二次方程的是,下列事件中,属于必然事件的是,如果,那么的值为等内容,欢迎下载使用。
这是一份2023-2024学年安徽省宁国市宁阳学校数学九年级第一学期期末经典试题含答案,共8页。