2024年安徽省无为市九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的方程x2+6x-a=0无实数根,则a的值可以是下列选项中的( )
A.-10B.-9C.9D.10
2、(4分)以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是( )
A.B.
C.D.
3、(4分)如图①,点从菱形的顶点出发,沿以的速度匀速运动到点.图②是点运动时,的面积()随着时间()变化的关系图象,则菱形的边长为( )
A.B.C.D.
4、(4分)在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比( )
A.向右平移了5个单位长度B.向左平移了5个单位长度
C.向上平移了5个单位长度D.向下平移了5个单位长度
5、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
6、(4分)在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度,所得到的点坐标为( )
A.(1,0)B.(1,2)C.(5,4)D.(5,0)
7、(4分)已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是( )
A.B.
C.D.
8、(4分)如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若直线经过点和,且,是整数,则___.
10、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
11、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
12、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
13、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的方程 (m-1)x-mx+1=0。
(1)证明:不论m为何值时,方程总有实数根;
(2)若m为整数,当m为何值时,方程有两个不相等的整数根。
15、(8分)解不等式组:,并把解集在数轴上表示出来。
16、(8分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:
请你根据以上统计图中的信息,解答下列问题:
(1)该班有学生多少人?
(2)补全条形统计图;
(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?
17、(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点, C点的坐标是(4,-1),D点的横坐标为-1.
(1)求反比例函数与一次函数的关系式;
(1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?
18、(10分)已知关于x的方程2x2+kx-1=0.
(1)求证:方程有两个不相等的实数根.
(2)若方程的一个根是-1,求方程的另一个根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是_____.
20、(4分)如图,垂直平分线段于点的平分线交于点,连结,则∠AEC的度数是 .
21、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
22、(4分)如图,两个大小完全相同的矩形ABCD和AEFG中AB=4 cm,BC=3 cm,则FC=_____.
23、(4分)有一个一元二次方程,它的一个根 x1=1,另一个根-2<x2<1. 请你写出一个符合这样条件的方程:_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。你能用所学知识说明谁的加工方法更符合要求吗?
25、(10分)如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
26、(12分)根据下列条件分别确定函数y=kx+b的解析式:
(1)y与x成正比例,当x=5时,y=6;
(2)直线y=kx+b经过点(3,6)与点(2,-4).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
二次方程无实数根,<0, 据此列不等式,解不等式,在解集中取数即可.
【详解】
解:根据题意得:=36+4a<0,得a<-9.
故答案为:A
本题考查了一元二次方程的根,,有两个实数根,,有两个相等的实数根,,无实数根,根据的取值判断一元二次方程根的情况是解题的关键.
2、D
【解析】
根据中心对称图形的概念求解.
【详解】
A.此图案是轴对称图形,不符合题意;
B.此图案不是中心对称图形,不符合题意;
C.此图案是轴对称图形,不符合题意;
D.此图案是中心对称图形,符合题意;
故选D.
此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、C
【解析】
根据图②可以发现点E运动5秒后△ABE的面积停止了变化,且为最大面积,由此结合图①,当点E在CD上运动时,△ABE面积最大,从而得出AC=5,CD=,然后根据△ABE最大面积为2得出△ABC面积为2,所以菱形ABCD面积为4,从而再次得出△ABC的高为4,然后进一步利用勾股定理求出菱形边长即可.
【详解】
如图,过C点作AB垂线,交AB于E,
由题意得:△ABC面积为2,AC=5,DC=,
∵四边形ABCD是菱形,
∴AB=DC=BC=,
∴△ABC面积==2,
∴CE=4,
∴在Rt△AEC中,AE==3,
∴BE=,
∴在Rt△BEC中,,
即,
解得:.
∴菱形边长为.
故选:C.
本题主要考查了菱形与三角形动点问题的综合运用,熟练掌握相关性质是解题关键.
4、B
【解析】
因为纵坐标不变,横坐标减5,相当于点向左平移了5个单位,故选B.
5、D
【解析】
先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
【详解】
解不等式组可求得:
不等式组的解集是,
故选D.
本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
6、D
【解析】
根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.
【详解】
将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).
故选D.
本题考查了坐标与图形变化-平移:向右平移a个单位,坐标P(x,y) (x+a,y);向左平移a个单位,坐标P(x,y)(x-a,y);向上平移b个单位,坐标P(x,y)(x,y+b);向下平移b个单位,坐标P(x,y)(x,y-b).
7、B
【解析】
试题分析:根据两函数图象所过的象限进行逐一分析,再进行选择即可.
解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
B、由函数y=ax+b过二、三、四象限可知,a<0,b<0;由函数的图象可知,a+b>0,两结论相矛盾,故不可能成立;
C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;
故选B.
考点:反比例函数的图象;一次函数的图象.
点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
8、A
【解析】
根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.
【详解】
在△ABC中,∵∠B=55°,∠C=30°,
∴∠BAC=180°−∠B−∠C=95°,
由作图可知MN为AC的中垂线,
∴DA=DC,
∴∠DAC=∠C=30°,
∴∠BAD=∠BAC−∠DAC=65°,
故选:A.
此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
把和代入,列方程组得到,由于,于是得到,即可得到结论.
【详解】
依题意得:,
∴k=n﹣3,
∵0<k<2,
∴0<n﹣3<2,
∴3<n<5,
∵n是整数,则n=1
故答案为1.
本题考查了一次函数的图象与系数的关系,用含n的代数式表示出k是解答本题的关键.注重考察学生思维的严谨性,易错题,难度中等.
10、1
【解析】
过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到 OB•AC=1,易得OC•AC=1,设A点坐标为(x,y),即可得到k=xy=OC•AC=1.
【详解】
过点A作OB的垂线,垂足为点C,如图,
∵AO=AB,
∴OC=BC=OB,
∵△ABO的面积为1,
∴OB⋅AC=1,
∴OC⋅AC=1.
设A点坐标为(x,y),而点A在反比例函数y= (k>0)的图象上,
∴k=xy=OC⋅AC=1.
故答案为:1.
此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
11、(3+,)或(-3+,)
【解析】
根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
【详解】
如图,
设A(m,m)(m>0),如图所示,
∴点B的纵坐标为m,
∵点B在双曲线y=上,
∴,
∴x=,
∵AB=6,
即|m-|=6,
∴m-=6或-m=6,
∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
∴B(3+,)或(-3+,),
故答案为:(3+,)或(-3+,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
12、8 0.4
【解析】
频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.
【详解】
解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.
故答案为: (1). 8 (2). 0.4
本题考查了频数与频率,依据两者的定义即可解题.
13、(1,5)
【解析】
根据向右平移横坐标加,向上平移纵坐标加求解即可.
【详解】
解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',
∴点P′的横坐标为-2+3=1,
纵坐标为1+4=5,
∴点P′的坐标是(1,5).
故答案为(1,5).
本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)m=0
【解析】
(1)分该方程为一元二次方程和一元一次方程展开证明即可。
(2)利用因式分解解该一元二次方程,求出方程的根,利用整数概念进行求值即可
【详解】
解:(1)当 时, 是关于x的一元二次方程。
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程总有实数根;
当m=1时,是关于x的一元一次方程。
∴-x+1=0
∴x=1
∴方程有实数根x=1
∴不论m为何值时,方程总有实数根
(2)
分解因式得
解得:
∵方程有两个不相等的整数根
∴为整数,
∴ 且
∴m=0
本题考查了根的判别式,掌握方程与根的关系,及因式分解解一元二次方程,和整数的概念是解题的关键.
15、,解集在数轴上表示见解析
【解析】
试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
试题解析:
由①得:
由②得:
∴不等式组的解集为:
解集在数轴上表示为:
16、(1)因为捐2本的人数是15人,占30%,所以该班人数为=50
(2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)
(3)七(1)班全体同学所捐献图书的中位数是=3(本),众数是2本.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求得总人数;
(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;
(3)根据中位数和众数的定义解答
17、(1)y=-0.5x+1,y=;(1)-1
【解析】
(1)先把C点坐标代入反比例函数求出m,再根据D坐标的横坐标为-1求出D点坐标,再把C,D坐标代入一次函数求出k,b的值;
(1)根据C,D两点的横坐标,结合图像即可求解.
【详解】
(1)把C(4,-1)代入反比例函数,得m=4×(-1)=-4,
∴y=;
设D(-1,y),代入y=得y=-1,
∴D(-1,1)
把C(4,-1), D(-1,1)代入一次函数
得
解得k=-0.5,b=1
∴y=-0.5x+1
(1)∵C,D两点的横坐标分别为4,-1,
由图像可知当-1
此题主要考查反比例函数与一次函数,解题的关键是熟知待定系数法确定函数关系式.
18、 (1)证明见解析;(2).
【解析】
(1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;
(2)利用根与系数的关系可直接求出方程的另一个根.
【详解】
解:(1)∵△=k2+8>0,
∴不论k取何值,该方程都有两个不相等的实数根;
(2)设方程的另一个根为x1,
则,
解得:,
∴方程的另一个根为.
本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=1x1﹣1.
【解析】
利用正比例函数的定义,设y=k(x1﹣1),然后把x=1,y=6代入求出k即可得到y与x的函数关系式.
【详解】
设y=k(x1﹣1),把x=1,y=6代入得:k×(11﹣1)=6,解得:k=1,所以y=1(x1﹣1),即y=1x1﹣1.
故答案为y=1x1﹣1.
本题考查了待定系数法求函数的解析式:在利用待定系数法求函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.
20、115°
【解析】
试题分析:根据垂直平分线的性质可得BE=CE,即可得到∠EBC=∠ECB=25°,再根据三角形外角的性质即可求得∠AEC=∠EDC+∠ECB=115°.
考点:角平分线的性质,垂直平分线的性质,三角形外角的性质
21、AB=BC(答案不唯一).
【解析】
根据正方形的判定添加条件即可.
【详解】
解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).
本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
22、5cm
【解析】
利用勾股定理列式求出AC的长度,再根据两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,然后判断出△ACF是等腰直角三角形,再利用等边三角形的性质求解即可.
【详解】
∵矩形ABCD中,AB=4cm,BC=3cm,
∴AC===5cm,
∵矩形ABCD和AEFG是两个大小完全相同的矩形,
∴AC=AF,∠BAC+∠GAF=90°,
∴△ACF是等腰直角三角形,
∴FC=AC=5cm.
故答案为5cm.
本题考查了矩形的对角线相等,每一个角都是直角的性质,勾股定理应用,判断出△ACF是等腰直角三角形是解题的关键.
23、(答案不唯一).
【解析】
可选择x2=-1,则两根之和与两根之积可求,再设一元二次方程的二次项系数为1,那么可得所求方程.
【详解】
解:∵方程的另一个根-2<x2<1,
∴可设另一个根为x2=-1,
∵一个根 x1=1,
∴两根之和为1,两根之积为-1,
设一元二次方程的二次项系数为1,此时方程应为.
本题考查的是已知两数,构造以此两数为根的一元二次方程,这属于一元二次方程根与系数关系的知识,对于此类问题:知道方程的一个根和另一个根的范围,可设出另一个根的具体值,进一步求出两根之和与两根之积,再设一元二次方程的二次项系数为1,那么所求的一元二次方程即为.
二、解答题(本大题共3个小题,共30分)
24、甲的加工更符合要求.图①中正方形的边长是,图②中的正方形边长是,因为>,所以甲的加工更符合要求.
【解析】由于有正方形的一边平行于三角形的一边,故可用相似三角形的性质求解.
25、 (1) 自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3) .
【解析】
(1)根据定义确定自变量、因变量即可;
(2)根据题意计算即可;
(3)观察数据表格确定阴影面积变化趋势;
(4)阴影面积为正方形面积减去四个等腰直角三角形面积.
【详解】
解:(1)在这个变化过程中,自变量:三角形的直角边长,因变量:阴影部分的面积;
(2)等腰直角三角形直角边长为6时,阴影面积为202-4× ×62=328,
等腰直角三角形直角边长为9时,阴影面积为202-4××92=238;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积由减小到;
(4).
故答案为:(1) 自变量:三角形的直角边长,因变量:阴影部分的面积; (2)见解析; (3) .
本题考查函数关系式,函数求值,涉及到了函数的定义、通过数值变化观察函数值变化趋势.熟练掌握正方形和等腰直角三角形的面积公式是解题的关键.
26、(1);(2).
【解析】
(1)先根据正比例函数的定义可得,再利用待定系数法即可得;
(2)直接利用待定系数法即可得.
【详解】
(1)y与x成正比例
又当时,
解得
则;
(2)由题意,将点代入得:
解得
则.
本题考查了利用待定系数法求正比例函数和一次函数的解析,掌握待定系数法是解题关键.
题号
一
二
三
四
五
总分
得分
三角形的直角边长/
1
2
3
4
5
6
7
8
9
10
阴影部分的面积/
398
392
382
368
350
302
272
200
三角形的直角边长/
1
2
3
4
5
6
7
8
9
10
阴影部分的面积/
328
238
2024年安徽省宁国市宁阳学校数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024年安徽省宁国市宁阳学校数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省六区联考九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2024年安徽省六区联考九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省阜阳临泉县联考数学九年级第一学期开学调研试题【含答案】: 这是一份2024年安徽省阜阳临泉县联考数学九年级第一学期开学调研试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。