2024年安徽省宿州二中学数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列选项中,能使分式值为的的值是( )
A.B.C.或D.
2、(4分)实数在数轴上对应点如图所示,则化简 的结果是( )
A.B.C.D.
3、(4分)一组数据:-1、2、3、1、0,则这组数据的平均数和方差分别是( )
A.1,1.8B.1.8,1C.2,1D.1,2
4、(4分)下列方程中是二项方程的是( )
A.;B.=0;C.;D.=1.
5、(4分)已知点A(1,2)在反比例函数的图象上,则该反比例函数的解析式是( )
A.B.C.D.y=2x
6、(4分)下列视力表的部分图案中,既是轴对称图形亦是中心对称图形的是( )
A.B.C.D.
7、(4分)下列条件中,不能判定四边形是平行四边形的是( )
A.,B.,
C.,D.,
8、(4分)一次函数的图象如图所示,则不等式的解集是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)
10、(4分)在数轴上表示实数a的点如图所示,化简+|a-2|的结果为____________.
11、(4分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______
12、(4分)等式成立的条件是_____.
13、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:
(1)本次被调査的家庭有 户,表中 a= ;
(2)本次调查数据的中位数出现在 组.扇形统计图中,E组所在扇形的圆心角是 度;
(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?
15、(8分)在中,,,是的角平分线,过点作于点,将绕点旋转,使的两边交直线于点,交直线于点,请解答下列问题:
(1)当绕点旋转到如图1的位置,点在线段上,点在线段上时,且满足.
①请判断线段、、之间的数量关系,并加以证明
②求出的度数.
(2)当保持等于(1)中度数且绕点旋转到图2的位置时,若,,求的面积.
16、(8分)如图,直线经过矩形的对角线的中点,分别与矩形的两边相交于点、.
(1)求证:;
(2)若,则四边形是______形,并说明理由;
(3)在(2)的条件下,若,,求的面积.
17、(10分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
18、(10分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若m+n=3,则2m2+4mn+2n2-6的值为________.
20、(4分)数据6,5,7,7,9的众数是 .
21、(4分)如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.
22、(4分)关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.
23、(4分)如图,在▱ABCD中,若∠A=63°,则∠D=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线y1=mx+3n﹣1与直线y1=(m﹣1)x﹣1n+1.
(1)如果m=﹣1,n=1,当x取何值时,y1>y1?
(1)如果两条直线相交于点A,A点的横坐标x满足﹣1<x<13,求整数n的值.
25、(10分)已知直线l为x+y=8,点P(x,y)在l上且x>0,y>0,点A的坐标为(6,0).
(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=9时,求点P的坐标;
(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.
26、(12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
在“平行四边形、菱形、矩形、正方形”中是“等邻边四边形”的是 .
(2)概念应用
在Rt△ABC中,∠C=,AB=5,AC=3.点D是AB边的中点,点E是BC边上的一个动点,若四边形ADEC是“等邻边四边形”,则CE= .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分子等于0,且分母不等于0列式求解即可.
【详解】
由题意得
,
解得
x=-1.
故选D.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
2、B
【解析】
分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.
详解:由数轴可得:a<0<b,a- b<0,
∴=|b|+| a-b|-| a|,
=b-(a-b)+a,
=b-a+b+a,
=2b.
故选B.
点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.
3、D
【解析】
先根据平均数计算公式列出算式进行计算,再根据平均数求出方差即可.
【详解】
一组数据:-1、2、3、1、0,则平均数=,
方差=,
故选D.
本题是对数据平均数和方差的考查,熟练掌握平均数和方差公式是解决本题的关键.
4、C
【解析】
【分析】二项方程:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.据此可以判断.
【详解】A. ,有2个未知数项,故不能选;
B. =0,没有非0常数项,故不能选;
C. ,符合要求,故能选;
D. =1,有2个未知数项,故不能选.
故选C
【点睛】本题考核知识点:二项方程.解题关键点:理解二项方程的定义.
5、C
【解析】
把点A(1,2)代入可得方程2=,解方程即可.
【详解】
解:∵点A(1,2)在反比例函数的图象上,
∴2=,
∴k=2,
则这个反比例函数的解析式是.
故选:C.
本题考查了用待定系数法求函数解析式,正确代入是解题的关键.
6、B
【解析】
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;据此分别对各选项图形加以判断即可.
【详解】
A:是轴对称图形,但不是中心对称图形,故不符合题意;
B:是轴对称图形,也是中心对称图形,故符合题意;
C:不是轴对称图形,是中心对称图形,故不符合题意;
D:不是轴对称图形,也不是中心对称图形,故不符合题意;
故选:B.
本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.
7、A
【解析】
根据平行四边形的判定方法逐个判断即可解决问题.
【详解】
解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;
B、∵AB∥CD,
∴∠B+∠C=180°,
∵∠A=∠C,
∴∠A+∠B=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;
C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;
D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;
故选:A.
本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.
8、D
【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.
【详解】
当x>-1时,y<0,
所以不等式kx+b<0的解集是x>-1.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
【分析】由直线y=1x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.
【详解】∵直线y=1x与线段AB有公共点,
∴1n≥3,
∴n≥,
故答案为:1.
【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.
10、3.
【解析】
试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.
考点:绝对值意义与化简.
11、()
【解析】
根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.
【详解】
解:∵△AOB是等腰直角三角形,OA=1,
∴AB=OA=1,
∴B(1,1),
将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,
再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,
∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),
∵2÷4=503…1,
∴点B2与B1同在一个象限内,
∵-4=-22,8=23,16=24,
∴点B2(22,-22).
故答案为:(22,-22).
此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
12、﹣1≤a<3
【解析】
根据负数没有算术平方根列出不等式组,求出解集即可.
【详解】
依题意,得:,解得:﹣1≤a<3
此题考查二次根式的乘除法,解题关键在于掌握运算法则
13、x>1.
【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),
∴由图象可得,当x>1时,x+b>kx+6,
即不等式x+b>kx+6的解集为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、(1)90,19;(2)B,24;(3)1320户
【解析】
(1)根据图表数据与百分率对应求得总人数,从而求得a值;
(2)结合图表及数据可求得中位数和E所在的圆心角度数;
(3)根据样本估计总体.
【详解】
(1)∵A组共有27户,对应的百分率为30%
∴总户数为:(户)
∴(户) ;
(2) ∵共有90户,中位数为第45,46两个数据的平均数,27+19=46,
∴ 中位数位于B组;
E对应的圆心角度数为:
(3) 旅游消费8000元以上的家庭为C、D、E组,
大约有:2700×=1320(户).
本题考查统计的相关知识,解题关键在于梳理统计图当中的条件信息.
15、 (1)①,理由见解析;②;(2) .
【解析】
(1)①根据角平分线的性质得到根据全等三角形的性质和判定即可得到答案;
②根据全等三角形的性质即可得到答案;
(2) 根据全等三角形的性质和判定即可得到答案;
【详解】
(1)①
∵
∴,
∵平分
∴
又∵
∴
∴
∵中,
∴
∴
∴
∴
∵
∴
②∵
∴
∴
∵
∴
∴
(2)∵
∴
又∵
∴
∴
∵
∴
∴
设,则
∵,∴
∴,
∴
∴
∴
∴
∴
∴
本题考查角平分线的性质、全等三角形的性质和判定,解题的关键是掌握角平分线的性质、全等三角形的性质和判定.
16、 (1)证明见解析;(2)菱,理由见解析;(3).
【解析】
(1)根据矩形的性质得到AD∥BC,根据平行线的性质得到∠EDO=∠FBO,由全等三角形的判定定理即可得到结论;
(2)根据平行四边形的判定定理得到四边形BEDF是平行四边形,由菱形的判定定理即可得到结论;
(3)根据勾股定理得到,设BE=DE=x,得到AE=8-x,根据勾股定理列方程得到,根据三角形的面积公式即可得到结论.
【详解】
解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EDO=∠FBO,
∵点O是BD的中点,
∴BO=DO,
在△BOF与△DOE中,,
∴△BOF≌△DOE(ASA),
∴OE=OF;
(2)四边形BEDF是菱形,
理由:∵OE=OF,OB=OD,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴平行四边形BEDF是菱形;
故答案为菱;
(3)∵四边形ABCD是矩形,
∴∠A=90°,
∵AD=8,BD=10,
,
设BE=DE=x,
∴AE=8﹣x,
∵AB2+AE2=BE2,
∴62+(8﹣x)2=x2,
解得:,
∴BE=,
∵BO=BD=5,
∴OE=,
∴△BDE的面积.
本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,全等三角形的判定与性质,勾股定理等知识;熟练掌握矩形的性质,证明四边形是菱形是解决问题的关键.
17、(1)AE=EF=AF;(2)证明过程见解析;(3)3-
【解析】
试题分析:(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.
(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF• sin60°,因为CF=BE,只要求出BE即可解决问题.
试题解析:解:(1)结论AE=EF=AF.
理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°.∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC.∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.
(2)连接AC.如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,∵∠BAE=∠CAF,BA=AC,∠B=∠ACF,∴△BAE≌△CAF,∴BE=CF.
(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H.∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°.在Rt△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=.在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=,∴EB=EG﹣BG=.∵△AEB≌△AFC,∴AE=AF,EB=CF=,∠AEB=∠AFC=45°.∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°.
∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°.在Rt△EFH中,∠CEF=15°,∴∠EFH=75°.∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°.∵∠AFC=45°,∴∠CFH=∠AFC﹣∠AFH=30°.在Rt△CHF中,∵∠CFH=30°,CF=,∴FH=CF•sin60°==,∴点F到BC的距离为.
18、﹣,﹣.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后在-2< x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.
【详解】
原式====,∵-2< x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.
本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
原式=2(m2+2mn+n2)-6,
=2(m+n)2-6,
=2×9-6,
=1.
20、1.
【解析】
试题分析:数字1出现了2次,为出现次数最多的数,故众数为1,故答案为1.
考点:众数.
21、
【解析】
连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.
【详解】
如图,连接交于D,如图,
中,∵,
∴,
∵绕点A逆时针方向旋转到的位置,
∴,
∴垂直平分为等边三角形,
∴,
∴.
故答案为:.
考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,
22、-1
【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.
【详解】
解:将x=1代入方程得:1+3+m﹣1=0,
解得:m=﹣1,
故答案为﹣1.
本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
23、117°
【解析】
根据平行线的性质即可解答
【详解】
ABCD为平行四边形,
所以,AB∥DC,
所以,∠A+∠D=180°,
∠D=180°-63°=117°。
此题考查平行线的性质,解题关键在于利用同旁内角等于180°
二、解答题(本大题共3个小题,共30分)
24、(1)当x>﹣1时,y1>y1;(1)整数n=﹣1或2.
【解析】
(1)把m=﹣1,n=1代入直线解析式,求出交点坐标,根据交点坐标即可求解;
(1)根据两直线相交联立方程解答即可.
【详解】
(1)∵m=﹣1,n=1,
∴直线y1=mx+3n﹣1=﹣x+1,直线y1=(m﹣1)x﹣1n+1=﹣1x,
依题意有,
解得,
故当x>﹣1时,y1>y1;
(1)由 y1=y1得:mx+3n﹣1=(m﹣1)x﹣1n+1,
解得:x=﹣5n+3,
∵﹣1<x<13,
∴﹣1<﹣5n+3<13,
解得:﹣1<n<1,
又∵n是整数,
∴整数n=﹣1或2.
本题考查了两条直线相交或平行问题、关键是根据两直线相交联立方程解答.
25、(1)、y=24﹣3x(0<x<8);(2)、P(5,3);(3)、(6.4,1.6).
【解析】
试题分析:(1)根据三角形的面积公式即可直接求解;
(2)把S=9代入,解方程即可求解;
(3)点O关于l的对称点B,AB与直线x+y=8的交点就是所求.
试题解析:(1)如图所示:
∵点P(x,y)在直线x+y=8上,
∴y=8﹣x,
∵点A的坐标为(6,0),
∴S=3(8﹣x)=24﹣3x,(0<x<8);
(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).
(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,
由8k+b=8,6k+b=0,解得k=4,b=﹣24,
故直线AB的解析式为y=4x﹣24,
由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,
点M的坐标为(6.4,1.6).
考点: 轴对称-最短路线问题;一次函数图象上点的坐标特征.
26、(1)菱形,正方形;(2)CE=3或
【解析】
(1)根据“等邻边四边形”的定义即可判断;
(2)分①当CE=AC②当CE=DE时,分别进行求解即可.
【详解】
(1)“等邻边四边形”的是菱形,正方形;
(2)∵∠C=,AB=5,AC=3.
∴BC=
∵四边形ADEC是“等邻边四边形”,
∴分两种情况:
①当CE=AC时,CE=3;
②当CE=DE时,如图,过D作DF⊥BC于点F
设CE=DE=x,
∵DF⊥BC,AC⊥BC,D为AB中点,
则DF=1.5,EF=2-x,
由勾股定理得DE2=EF2+DF2,即x2=(2-x)2+1.52,
解得x=,
∴CE=3或
此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.
题号
一
二
三
四
五
总分
得分
批阅人
组别
家庭年旅游消费金额x(元)
户数
A
x≤4000
27
B
4000< x≤8000
a
C
8000< x≤12000
24
D
12000< x≤16000
14
E
x>16000
6
2024年安徽省宿州地区数学九上开学统考试题【含答案】: 这是一份2024年安徽省宿州地区数学九上开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省王浩屯中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年山东省王浩屯中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年临沂市重点中学数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。