2024年安徽省宿州市第十一中学数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据1,2,3,,它们的平均数是2,则这一组数据的方差为( )
A.1B.2C.3D.
2、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是( )
A.AE=CEB.AE=CEC.AE=CED.AE=2CE
3、(4分)已知一组数据45,51,54,52,45,44,则这组数据的众数、中位数分别为( )
A.45,48B.44,45C.45,51D.52,53
4、(4分)计算结果正确的是( )
A.B.C.D.
5、(4分)数据2,3,5,5,4的众数是( ).
A.2B.3C.4D.5
6、(4分)如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是( )
A.1个B.2个
C.3个D.4个
7、(4分)下列结论中,正确的是( )
A.四边相等的四边形是正方形
B.对角线相等的菱形是正方形
C.正方形两条对角线相等,但不互相垂直平分
D.矩形、菱形、正方形都具有“对角线相等”的性质
8、(4分)电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为( )
A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某一次函数的图象经过点(1,),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:______________.
10、(4分)如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.
11、(4分)a、b、c是△ABC三边的长,化简+|c-a-b|=_______.
12、(4分)如图,为直角三角形,其中,则的长为__________________________.
13、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(知识链接)连结三角形两边中点的线段,叫做三角形的中位线.
(动手操作)小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.
(性质证明)小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).
15、(8分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:
(1)填空:当点M在AC上时,BN= (用含t的代数式表示);
(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;
(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.
16、(8分)(1)计算:
(2)当时,求代数的值.
17、(10分)如图,中,,,在AB的同侧作正、正和正,求四边形PCDE面积的最大值.
18、(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:四边形ABCD
求作:点P,使∠PBC=∠PCB,且点P到AD和DC的距离相等.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若a≠b,且a2﹣a=b2﹣b,则a+b=__.
20、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
21、(4分)______.
22、(4分)如图,中,,点在上,,将线段沿方向平移得到线段,点分别落在边上,则的周长是 cm.
23、(4分)如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,是上的中线,的垂直平分线交于点,连接并延长交于点,,垂足为.
(1)求证:;
(2)若,,求的长;
(3)如图,在中,,,是上的一点,且,若,请你直接写出的长.
25、(10分)如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AF=DF,
①求证:AB=DE;
②若AB=3,BF=5,求△BCE的周长.
26、(12分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).
⑴求和的值;
⑵过点作直线平行轴交轴于点,连结AC,求△的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先根据平均数的定义确定出n的值,再根据方差的计算公式计算即可.
【详解】
解:∵数据 1,2,3,n的平均数是2,
∴(1+2+3+n)÷4=2,
∴n=2,
∴这组数据的方差是:
故选择:D.
此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
2、D
【解析】
首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.
【详解】
连接BE,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE,
故选D.
此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
3、A
【解析】
先把原数据按由小到大排列,然后根据众数、中位数的定义求解.
【详解】
数据从小到大排列为:44,45,45,51,52,54,
所以这组数据的众数为45,中位数为×(45+51)=48,
故选A.
本题考查了众数与中位数,熟练掌握众数与中位数的概念以及求解方法是解题的关键.一组数据中出现次数最多的数据叫做众数.一组数据按从小到大的顺序排列,位于最中间的数(或中间两个数的平均数)叫做这组数据的中位数.
4、A
【解析】
直接根据进行计算即可.
【详解】
解:;
故选:A.
本题考查了二次根式的计算与化简,解题的关键是熟练掌握二次根式的运算法则.
5、D
【解析】
由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.
【详解】
解:∵1是这组数据中出现次数最多的数据,
∴这组数据的众数为1.
故选:D.
本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.
6、C
【解析】
由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.
【详解】
解:∵,
∴,
∴∠BAC=90°,
∴AB⊥AC,故①正确;
∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
又∴∠BAC=90°,
∴∠DAE=110°,
∵△ABD和△FBC都是等边三角形,
∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC,
在△ABC与△DBF中,
,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=4,
同理可证:△ABC≌△EFC(SAS),
∴AB=EF=AD=3,
∴四边形AEFD是平行四边形,故②正确;
∴∠DFE=∠DAE=110°,故③正确;
∴∠FDA=180°-∠DFE=180°-110°=30°,
过点作于点,
∴,
故④不正确;
∴正确的个数是3个,
故选:C.
本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.
7、B
【解析】
A.可判断为菱形,故本选项错误,
B.对角线相等的菱形是正方形,故本选项正确,
C.正方形的两条对角线相等,且互相垂直平分,故本选项错误,
D.菱形的对角线不一定相等,故本选项错误,
故选B.
8、A
【解析】
∵(12,6)表示12排6号,(12,12) 表示12排12号,
∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.
故选A.
考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-x-1(答案不唯一).
【解析】
根据y随着x的增大而减小推断出k<1的关系,再利用过点(1,-2)来确定函数的解析式.
【详解】
解:设一次函数解析式为y=kx+b,
∵一次函数y随着x的增大而减小,
∴k<1.
又∵直线过点(1,-2),
∴解析式可以为:y=-x-1等.
故答案为:y=-x-1(答案不唯一).
此题主要考查了一次函数的性质,得出k的符号进而求出是解题关键.本题是开放题,答案不唯一。
10、10cm
【解析】
求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.
【详解】
解:∵∠A=∠B,
∴BC=AC=5cm,
∵DF∥AC,
∴∠A=∠BDF,
∵∠A=∠B,
∴∠B=∠BDF,
∴DF=BF,
同理AE=DE,
∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
故答案为10cm.
本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.
11、2a.
【解析】
可根据三角形的性质:两边之和大于第三边.依此对原式进行去根号和去绝对值.
【详解】
∵a、b、c是△ABC三边的长
∴a+c-b>0,a+b-c>0
∴原式=|a-b+c|+|c-a-b|
=a+c-b+a+b-c
=2a.
故答案为:2a.
考查了二次根式的化简和三角形的三边关系定理.
12、.
【解析】
由∠B=90°,∠BAD=45°,根据直角三角形两锐角互余求得∠BDA=45°,因此AB=BD,由∠DAC=15°,根据三角形外角性质可求得∠C=30°,由AC=2,根据直角三角形中30°的角所对的直角边等于斜边的一半,求得AB=1,即BD=1,根据勾股定理求得BC=,从而得到CD的长.
【详解】
解:∵∠B=90°,∠BAD=45°,
∴∠BDA=45°,AB=BD,
∵∠DAC=15°,
∴∠C=30°,
∴AB=BD=AC=×2=1,
∴BC===,
∴CD=BC-BD=-1.
故答案为-1.
本题考查了直角三角形两锐角互余的性质,30°的角所对的直角边等于斜边的一半,勾股定理等知识.
13、x=-1
【解析】
观察图象,根据图象与x轴的交点解答即可.
【详解】
∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
∴kx+1=0的解是x= -1.
故答案为:x= -1.
本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
作出图形,然后写出已知、求证,延长DE到F,使DE=EF,证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,全等三角形对应角相等可得∠F=∠ADE,再求出BD=CF,根据内错角相等,两直线平行判断出AB∥CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质证明结论.
【详解】
解:已知:如图所示,在△ABC中,D、E分别是AB、AC的中点,
求证:DE=BC,DE∥BC,
证明:延长DE到F,使DE=EF,连接CF,
∵点E是AC的中点,
∴AE=CE,
在△ADE和△CEF中,
,
∴△ADE≌△CEF(SAS),
∴AD=CF,∠ADE=∠F,
∴AB∥CF,
∵点D是AB的中点,
∴AD=BD,
∴BD=CF,
∴BD∥CF,
∴四边形BCFD是平行四边形,
∴DF∥BC,DF=BC,
∴DE∥BC且DE=BC.
本题考查的是三角形中位线定理的证明、平行四边形的判定和性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
15、(1)BN=2﹣t;(2)当t=4﹣或t=3或t=2时,△DNE是等腰三角形;(3)当t=时,S取得最大值.
【解析】
(1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=﹣AM=﹣t,据此可得;
(2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;
(3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.
【详解】
(1)如图1,
∵∠ACB=90°,AC=BC=2,
∴∠A=∠ABC=45°,AB=2,
∵AM=t,∠AMN=90°,
∴MN=AM=t,AN=AM=t,
则BN=AB﹣AN=
故答案为
(2)如图2,
∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,
∴DM=MN=AD﹣AM=4﹣t,
∴DN=DM=(4﹣t),
∵PM=BC=2,
∴PN=2﹣(4﹣t)=t﹣2,
∴BP=t﹣2,
∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,
则NE=,
∵DE=2,
∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;
②若DN=NE,则(4﹣t)=,解得t=3;
③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);
综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.
(3)①当0≤t<2时,如图3,
由题意知AM=MN=t,
则CM=NQ=AC﹣AM=2﹣t,
∴DM=CM+CD=4﹣t,
∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,
∴NQ=BQ=QG=2﹣t,
则NG=4﹣2t,
∴
当t=时,S取得最大值;
②当2≤t≤4时,如图4,
∵AM=t,AD=AC+CD=4,
∴DM=AD﹣AM=4﹣t,
∵∠DMN=90°,∠CDB=45°,
∴MN=DM=4﹣t,
∴S=(4﹣t)2=(t﹣4)2,
∵2≤t≤4,
∴当t=2时,S取得最大值2;
综上,当t=时,S取得最大值.
本题是四边形的综合问题,解题的关键是掌握正方形的性质和等腰直角三角形的判定与性质,等腰三角形的判定及二次函数性质的应用等知识点.
16、 (1) ;(2)
【解析】
(1)根据二次根式的运算法则和完全平方公式计算并化简即可;
(2)根据x,y的数值特点,先求出x+y,xy的值,再把原式变形代入求值即可。
【详解】
解:(1)原式=
=
(2),
,
则
故答案为: ;
本题考查了二次根式的混合运算,熟练掌握运算法则是关键。
17、四边形PCDE面积的最大值为1.
【解析】
先延长EP交BC于点F,得出,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积,最后根据,判断的最大值即可.
【详解】
延长EP交BC于点F,
,,
,
,
平分,
又,
,
设中,,,则
,,
和都是等边三角形,
,,,
,
≌,
,
同理可得:≌,
,
四边形CDEP是平行四边形,
四边形CDEP的面积,
又,
,
,
即四边形PCDE面积的最大值为1.
本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.
18、图形见解析.
【解析】
作∠ADC的平分线和BC的垂直平分线便可.
【详解】
解:如图所示,点P即为所求.
考查线段垂直平分线和角平分线的作图运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
先移项,然后利用平方差公式和因式分解法进行因式分解,则易求a+b的值.
【详解】
由a2﹣a=b2﹣b,得
a2﹣b2﹣(a﹣b)=2,
(a+b)(a﹣b)﹣(a﹣b)=2,
(a﹣b)(a+b﹣1)=2.
∵a≠b,
∴a+b﹣1=2,
则a+b=1.
故答案是:1.
本题考查了因式分解的应用.注意:a≠b条件的应用,该条件告诉我们a﹣b≠2,所以必须a+b﹣1=2.
20、x<1
【解析】
观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.
【详解】
由图象可知,当x<1时,有kx+6>x+b,
当x>1时,有kx+6<x+b,
所以,填x<1
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
21、1
【解析】
利用平方差公式即可计算.
【详解】
原式.
故答案为:1.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
22、13.
【解析】
试题分析:∵CD沿CB平移7cm至EF
考点:平移的性质;等腰三角形的性质.
23、5
【解析】
根据勾股定理,可得答案.
【详解】
解: PO==5,
故选: C.
本题考查了点的坐标,利用勾股定理是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析 (2) (3)
【解析】
(1)根据题意利用中线的性质和垂直平分线的性质,即可解答.
(2)根据题意和由(1)得到,再利用勾股定理得到,最后利用全等三角形的性质,即可解答.
(3)作于,于,可得,设,则,利用勾股定理即可解答.
【详解】
(1)证明:
∵,AD是上的中线,
∴.
又∵,
∴.
∵是的垂直平分线,
∴.
∴.
又∵,
∴.
(2)解:∵,是上的中线,,
∴.
由(1)知,,
∴.
∵,
∴.
∴.
由,及勾股定理,可得,
∵,
∴.
所以,.
(3).
解:如图,
作于,于,仿(1)可得,
且
∴
设,则,在中,
,得,(负值已舍).
∴.
此题考查垂直平分线的性质,全等三角形的判定与性质,勾股定理,解题关键在于作辅助线.
25、①见解析②1
【解析】
①利用平行四边形的性质∠A=∠FDE,∠ABF=∠E,结合AF=DF,可判定△ABF≌△DEF,即可得出AB=DE;
②利用角平分线以及平行线的性质,即可得到AF=AB=3,进而得出BC=AD=6,CD=AB=3,依据△ABF≌△DEF,可得DE=AB=3,EF=BF=5,进而得到△BCE的周长.
【详解】
解:如图①∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠A=∠FDE,∠ABF=∠E,
∵AF=DF,
∴△ABF≌△DEF,
∴AB=DE;
②∵BE平分∠ABC,
∴∠ABF=∠CBF,
∵AD∥BC,
∴∠CBF=∠AFB,
∴∠ABF=∠AFB,
∴AF=AB=3,
∴AD=2AF=6
∵四边形ABCD是平行四边形,
∴BC=AD=6,CD=AB=3,
∵△ABF≌△DEF,
∴DE=AB=3,EF=BF=5,
∴CE=6,BE=EF+BF=10,
∴△BCE的周长=BC+CE+BE=10+6+6=1.
本题主要考查了平行四边形的性质以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
26、(1)a=2,b=1(2)3
【解析】
试题分析:(1)因为直线与双曲线交于点B,将B点坐标分别代入直线与双曲线的解析式,即可解得 与 的值.
(2)先利用直线BC平行于 轴确定C点坐标为 ,然后根据三角形面积公式计算三角形面积即可.
试题解析:(1)由两图象相交于点B,得
解得:a=2,b=1
(2)∵点B(-3,2), 直线∥轴,
∴C点坐标为 ,BC=3,
∴ S△ABC =.
题号
一
二
三
四
五
总分
得分
2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山西省吕梁市兴县康宁中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年山西省吕梁市兴县康宁中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省威海市实验中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年山东省威海市实验中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。