年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析)

    立即下载
    加入资料篮
    高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析)第1页
    高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析)第2页
    高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析)

    展开

    这是一份高考数学二轮复习讲义(新高考版)专题2培优点9平面向量数量积的最值问题(学生版+解析),共8页。学案主要包含了方法总结,拓展训练等内容,欢迎下载使用。
    平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化.
    【典例】 (1)已知eq \(AB,\s\up6(→))⊥eq \(AC,\s\up6(→)),|eq \(AB,\s\up6(→))|=eq \f(1,t),|eq \(AC,\s\up6(→))|=t,若点P是△ABC所在平面内的一点,且eq \(AP,\s\up6(→))=eq \f(\(A B,\s\up6(→)),|\(AB,\s\up6(→))|)+eq \f(4\(AC,\s\up6(→)),|\(AC,\s\up6(→))|),则eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))的最大值等于( )
    A.13 B.15 C.19 D.21
    (2)如图,已知P是半径为2,圆心角为eq \f(π,3)的一段圆弧AB上的一点,若eq \(AB,\s\up6(→))=2eq \(BC,\s\up6(→)),则eq \(PC,\s\up6(→))·eq \(PA,\s\up6(→))的最小值为________.
    【拓展训练】
    1.在△ABC中,若A=120°,Aeq \(B,\s\up6(→))·eq \(AC,\s\up6(→))=-1,则|eq \(BC,\s\up6(→))|的最小值是________.
    2.(2020·天津)如图,在四边形ABCD中,∠B=60°,AB=3,BC=6,且eq \(AD,\s\up6(→))=λeq \(BC,\s\up6(→)),eq \(AD,\s\up6(→))·eq \(AB,\s\up6(→))=-eq \f(3,2),则实数λ的值为________,若M,N是线段BC上的动点,且|eq \(MN,\s\up6(→))|=1,则eq \(DM,\s\up6(→))·eq \(DN,\s\up6(→))的最小值为________.
    3.已知平面向量a,b,e满足|e|=1,a·e=1,b·e=-2,|a+b|=2,则a·b的最大值为________.
    4.在平行四边形ABCD中,若AB=2,AD=1,eq \(AB,\s\up6(→))·eq \ (AD,\s\up6(→))=-1,点M在边CD上,则eq \(MA,\s\up6(→))·eq \(MB,\s\up6(→))的最大值为________.
    培优点9 平面向量数量积的最值问题
    【方法总结】
    平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化.
    【典例】 (1)已知eq \(AB,\s\up6(→))⊥eq \(AC,\s\up6(→)),|eq \(AB,\s\up6(→))|=eq \f(1,t),|eq \(AC,\s\up6(→))|=t,若点P是△ABC所在平面内的一点,且eq \(AP,\s\up6(→))=eq \f(\(A B,\s\up6(→)),|\(AB,\s\up6(→))|)+eq \f(4\(AC,\s\up6(→)),|\(AC,\s\up6(→))|),则eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))的最大值等于( )
    A.13 B.15 C.19 D.21
    【答案】 A
    【解析】 建立如图所示的平面直角坐标系,则Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,t),0)),C(0,t),eq \(AB,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,t),0)),eq \(AC,\s\up6(→))=(0,t),
    Aeq \(P,\s\up6(→))=eq \f(\(A B,\s\up6(→)),|\(AB,\s\up6(→))|)+eq \f(4\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)=teq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,t),0))+eq \f(4,t)(0,t)=(1,4),∴P(1,4),
    eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,t)-1,-4))·(-1,t-4)
    =17-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,t)+4t))≤17-2eq \r(\f(1,t)·4t)=13,
    当且仅当t=eq \f(1,2)时等号成立.
    ∴eq \(PB,\s\up6(→))·eq \(PC,\s\up6(→))的最大值等于13.
    (2)如图,已知P是半径为2,圆心角为eq \f(π,3)的一段圆弧AB上的一点,若eq \(AB,\s\up6(→))=2eq \(BC,\s\up6(→)),则eq \(PC,\s\up6(→))·eq \(PA,\s\up6(→))的最小值为________.
    【答案】 5-2eq \r(13)
    【解析】 以圆心为坐标原点,平行于AB的直径所在直线为x轴,AB的垂直平分线所在的直线为y轴,建立平面直角坐标系(图略),则A(-1,eq \r(3)),C(2,eq \r(3)),
    设P(2cs θ,2sin θ)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)≤θ≤\f(2π,3))),
    则eq \(PC,\s\up6(→))·eq \(PA,\s\up6(→))=(2-2cs θ,eq \r(3)-2sin θ)·(-1-2cs θ,eq \r(3)-2sin θ)=5-2cs θ-4eq \r(3)sin θ=5-2eq \r(13)sin(θ+φ),
    其中0

    相关学案

    高考数学二轮复习讲义(新高考版)专题1培优点6极值点偏移问题(学生版+解析):

    这是一份高考数学二轮复习讲义(新高考版)专题1培优点6极值点偏移问题(学生版+解析),共6页。学案主要包含了要点提炼,方法总结,拓展训练等内容,欢迎下载使用。

    高考数学二轮复习讲义(新高考版)专题1培优点4洛必达法则(学生版+解析):

    这是一份高考数学二轮复习讲义(新高考版)专题1培优点4洛必达法则(学生版+解析),共5页。学案主要包含了要点提炼,方法总结,拓展训练等内容,欢迎下载使用。

    高考数学二轮复习讲义(新高考版)专题1培优点3导数中函数的构造问题(学生版+解析):

    这是一份高考数学二轮复习讲义(新高考版)专题1培优点3导数中函数的构造问题(学生版+解析),共7页。学案主要包含了要点提炼,方法总结等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map