2024年昌都市九年级数学第一学期开学监测模拟试题【含答案】
展开
这是一份2024年昌都市九年级数学第一学期开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知直线y=-x+4与y=x+2如图所示,则方程组的解为( )
A.B.C.D.
2、(4分)下列变形是因式分解的是( )
A.x(x+1)=x2+xB.m2n+2n=n(m+2)
C.x2+x+1=x(x+1)+1D.x2+2x﹣3=(x﹣1)(x+3)
3、(4分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( )
A.第一天B.第二天C.第三天D.第四天
4、(4分)一元二次方程的解是( )
A.B.
C.D.
5、(4分)在长度为1的线段上找到两个黄金分割点P,Q,则PQ=( )
A.B.C.D.
6、(4分)做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是( )
A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动
7、(4分)函数y=的自变量的取值范围是( )
A.x≥2B.x<2C.x>2D.x≤2
8、(4分)小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:π0-()-1=______.
10、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.
11、(4分)如图,已知∠1=100°,∠2=140°,那么∠3=_____度.
12、(4分)如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若,则________.
13、(4分)在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄球的概率为0.7,则袋子内共有乒乓球__________个。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.
15、(8分)如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:
(1)点在上运动的时间为 ,在上运动的速度为
(2)设的面积为,求当点在上运动时,与之间的函数解析式;
(3)①下列图表示的面积与时间之间的函数图象是 .
②当 时,的面积为
16、(8分)如图1,在ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.
(1)求∠BFC的度数;
(2)如图2,EG、DG分别平分∠AEF、∠ADF, EG与DG交于点G ,求∠EGD的度数.
17、(10分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
18、(10分)梯形中,,,,,、在上,平分,平分,、分别为、的中点,和分别与交于和,和交于点.
(1)求证:;
(2)当点在四边形内部时,设,,求关于的函数关系式,并写出自变量的取值范围;
(3)当时,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值为零,则x=______.
20、(4分)在一个不透明的口袋中,装有4个红球和1个白球,这些球除颜色之外其余都相同,那么摸出1个球是红球的概率为________.
21、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.
22、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 .
23、(4分)李华在淘宝网上开了一家羽毛球拍专卖店,平均每大可销售个,每个盈利元,若每个降价元,则每天可多销售个.如果每天要盈利元,每个应降价______元(要求每个降价幅度不超过元)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形 ABCD 为平行四边形,AD=a,BE∥AC,DE 交AC的延长线于F点,交BE于E点.
(1)求证:DF=FE ;
(2)若 AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;
(3)在(2)的条件下,求四边形ABED的面积.
25、(10分)已知:如图,在矩形中,点,分别在,边上,,连接,.求证:.
26、(12分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.
(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;
(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线y=-x+4与y=x+2的交点坐标.
故选B
点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.
2、D
【解析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、等式不成立,故B错误;
C、没把一个多项式转化成几个整式乘积的形式,故C错误;
D、把一个多项式转化成几个整式乘积的形式,故D正确;
故选:D.
此题考查因式分解的意义,解题关键在于掌握其定义
3、B
【解析】
根据图象中的信息即可得到结论.
【详解】
由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,
故选B.
4、D
【解析】
用因式分解法求解即可.
【详解】
解:x2+1x=0,
x(x+1)=0,
所以x=0或x+1=0,
解得:x1=0,x2=-1.
故选:D.
本题考查了一元二次方程的解法,根据方程的特点选择恰当的方法是解决此题的关键.
5、C
【解析】
【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.
【详解】:根据黄金分割点的概念,可知AP=BQ=,
则PQ=AP+BQ-AB=
故选:C
【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(
)叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.
6、D
【解析】
频率是在一次试验中某一事件出现的次数与试验总数的比值。概率是某一事件所固有的性质。频率是变化的每次试验可能不同,概率是稳定值不变。在一定条件下频率可以近似代替概率。
【详解】
A、概率不等于频率,A选项错误;
B、频率等于 ,B选项错误
C、概率是稳定值不变,C选项错误
D、频率会在某一个常数附近摆动,D选项是正确的。
故答案为:D
此题主要考查了概率公式,以及频率和概率的区别。
7、A
【解析】
根据被开方数大于等于0列不等式求解即可.
【详解】
由题意得:x﹣1≥0,解得:x≥1.
故选A.
本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
8、D
【解析】
剩余的钱=原有的钱-用去的钱,可列出函数关系式.
【详解】
剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50−8x.
故选D
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
直接利用零指数幂和负整数指数幂的运算法则进行计算即可.
【详解】
原式=1-3=-1.
故答案为:-1.
本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键.
10、4
【解析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.
【详解】
∵四边形ABCD是平行四边形
∴OB=OD,AB=CD,AD=BC
∵平行四边形ABCD的周长为8
∴AD+CD=4
∵
∴AM=CM
∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.
故答案为:4
本题主要考查了平行四边形的性质,线段垂直平分线的性质。
11、60°.
【解析】
该题是对三角形外角性质的考查,三角形三个外角的和为360°,所以∠4=360°-∠1-∠2=360°-100°-140°=120°,∠3=180°-120=60度.
【详解】
解:∵∠1=∠3+(180°-∠2),
∴∠3=∠1-(180°-∠2)=100°-(180°-140°)=60°.
故答案为:60°.
此题结合了三角形的外角和和邻补角的概念,要注意三角形的外角和与其它多边形一样,都是360°.
12、220
【解析】
先求出∠A与∠B的外角和,再根据外角和进行求解.
【详解】
∵
∴∠A与∠B的外角和为360°-220°=140°,
∵∠1,∠2,∠3是五边形ABCDE的3个外角,
∴360°-140°=220°,
故填:220°.
此题主要考查多边形的外角,解题的关键是熟知多边形的外角和为360°.
13、10
【解析】
分析:设有x个黄球,利用概率公式可得,解出x的值,可得黄球数量,再求总数即可.
【详解】
解:设黄色的乒乓球有x个,则:
解得:x=7
经检验,x=7是原分式方程的解
∴袋子里共有乒乓球7+3=10个
:此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.
三、解答题(本大题共5个小题,共48分)
14、EC=1
【解析】
根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.
【详解】
∵四边形ABCD为矩形,
∴DC=AB=8cm;∠B=∠C=90°;
由题意得:AF=AD=10,
设EF=DE=xcm,EC=8-x;
由勾股定理得:BF2=102-82,
∴BF=6,
∴CF=10-6=4;
在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,
解得:x=5,
EC=8-5=1.
故答案为:1
此题主要考查了翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.
15、(1)6,2;(2);(3)①C;②4或1.
【解析】
(1)由图象得:点P在AB上运动的时间为6s,在CD上运动的速度为6÷(15-12)=2(cm/s);
(2)当点P在CD上运动时,由题意得:PC=2(t-12),得出PD=30-2t,由三角形面积公式即可得出答案;
(3)①当点P在AB上运动时,y与t之间的函数解析式为y=3t;当点P在BC上运动时,y与t之间的函数解析式为y=18;当点P在CD上运动时,y与t之间的函数解析式为y=-6t+90,即可得出答案;
②由题意分两种情况,即可得出结果.
【详解】
(1)由题意得:点在上运动的时间为,
在上运动的速度为;
故答案为:6,2;
(2)当点在上运动时,
由题意得:,
,
的面积为,
即与之间的函数解析式为;
(3)①当点在上运动时,与之间的函数解析式为;
当点在上运动时,与之间的函数解析式为;
当点在上运动时,与之间的函数解析式为,
表示的面积与时间之间的函数图象是,
故答案为:;
②由题意得:当时,;
当时,;
即当或时,的面积为;
故答案为:4或1.
本题是四边形综合题目,考查了正方形的性质、函数与图象、三角形面积公式、分类讨论等知识;本题综合性强,熟练掌握正方形的性质和函数与图象是解题的关键.
16、(1)130〬(2)155〬
【解析】
(1)根据三角形的内角和是180°,可知∠BFC=180°-∠FBC-∠FCB,由BD,CE分别平分∠ABC,∠ACB,可知∠FBC=∠ABC,∠FCB=∠ACB,即∠BFC=180°-(∠ABC+∠ACB),再由三角形的内角和是180°,得出∠ABC+∠ACB=180°-∠A,从而求出∠BFC的度数;
(2)由角平分线的定义可得,,由四边形内角和定理可知,继而得到,再根据四边形内角和定理即可求得答案.
【详解】
(1)∵BD、CE分别平分∠ABC、∠ACB,
∴,,
∵,
∴∠BFC=;
(2)∵EG、DG分别平分∠AEF、∠ADF,
∴,,
∵,
∴ ,
∴∠EGD
.
本题考查了三角形内角和定理、四边形内角和定理,熟练掌握相关知识是解题的关键.注意数形结合思想的运用.
17、(1)16;(2)详见解析;(3)52%
【解析】
(1)直接总数减去其他组的人数,即可得到a
(2)直接补充图形即可
(3)先算出不低于40分的人数,然后除以总人数即可
【详解】
(1)a=50-4-6-14-10= 16
(2)如图所示.
(3)本次测试的优秀率是=52%
答:本次测试的优秀率是52%
本题主要考查频数分布直方图,比较简单,基础知识扎实是解题关键
18、(1)证明见解析;(2);(3)3或.
【解析】
(1)由中位线的性质,角平分线的定义和平行线的性质得出,易证,则结论可证;
(2)过作交于点K,过点D作交于点,则得到矩形,则有,,然后利用(1)中的结论有, ,在中,利用含30°的直角三角形的性质可得出QC,DQ的长度,然后在中利用勾股定理即可找到y关于x的函数关系式;
(3)分两种情况:点在梯形内部和点在梯形内部,当点在梯形内部时,有;当点在梯形内部时,有 ,分别结论(2)中的关系式即可求出EG的长度.
【详解】
(1)证明:、分别是、的中点,
.
平分,
.
又,
,
,
.
点是的中点,
.
.
(2)过作交于点K,过点D作交于点,
∵,,,
∴四边形是矩形,
,.
,,
,
同理:.
在中,
,
,,
.
,
.
在中,.
,
即.
.
(3)①点在梯形内部.
∵是梯形的中位线,
,
即.
解得:,
即.
②点在梯形内部.
同理:.
解得:,
即.
综上所述,EG的长度为3或.
本题主要考查四边形的综合问题,掌握中位线的性质,含30°的直角三角形的性质,勾股定理是基础,能够作出辅助线并分情况讨论是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
分式的值为零:分子等于零,且分母不等于零.
【详解】
依题意,得
|x|-1=2且x-1≠2,
解得,x=-1.
故答案是:-1.
考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
20、0.8
【解析】
由一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,直接利用概率公式求解即可求得答案.
【详解】
解:∵一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,
∴从口袋中随机摸一个球,则摸到红球的概率为:
故答案为:0.8
此题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
21、1
【解析】
解:应分(70-42)÷4=7,
∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,
∴应分1组.
故答案为:1.
22、1
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD.
∵AE∥BD,
∴四边形ABDE是平行四边形.
∴AB=DE=CD,即D为CE中点.
∵EF⊥BC,
∴∠EFC=90°.
∵AB∥CD,
∴∠DCF=∠ABC=60°.
∴∠CEF=30°.
∵EF=,
∴CE=2
∴AB=1
23、1
【解析】
首先设每个羽毛球拍降价x元,那么就多卖出5x个,根据每天要盈利1700元,可列方程求解.
【详解】
解:设每个羽毛球拍降价x元,
由题意得:(40-x)(20+5x)=1700,
即x2-31x+180=0,
解之得:x=1或x=20,
因为 每个降价幅度不超过15元,
所以 x=1符合题意,
故答案是:1.
本题考查了一元二次方程的应用,关键是看到降价和销售量的关系,然后根据利润可列方程求解.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2) (3)
【解析】
(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;
(2)在直角三角形ADC中利用勾股定理求解即可;
(3)求四边形ABED的面积,可分解为求梯形ABMD与三角形DME的面积,然后求两面积之和即可.
【详解】
(1)证明:延长DC交BE于点M,
∵BE∥AC,AB∥DC,
∴四边形ABMC是平行四边形,
∴CM=AB=DC,C为DM的中点,BE∥AC,
∴CF为△DME的中位线,
∴DF=FE;
(2)解:由(1)得CF是△DME的中位线,故ME=2CF,
又∵AC=2CF,四边形ABMC是平行四边形,
∴BE=2BM=2ME=2AC,
又∵AC⊥DC,
∴在Rt△ADC中,AC=AD•sin∠ADC=a,
∴BE=a.
(3)可将四边形ABED的面积分为两部分,梯形ABMD和△DME,
在Rt△ADC中:DC=,
∵CF是△DME的中位线,
∴CM=DC=,
∵四边形ABMC是平行四边形,
∴AB=MC=,BM=AC=a,
∴梯形ABMD面积为:(+a)××=;
由AC⊥DC和BE∥AC可证得△DME是直角三角形,
其面积为:××a=,
∴四边形ABED的面积为+=.
本题结合三角形的有关知识综合考查了平行四边形的性质,解题的关键是理解中位线的定义,会用勾股定理求解直角三角形,会计算一些简单的四边形的面积.
25、见解析
【解析】
根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.
【详解】
证明:∵四边形ABCD是矩形,
∴DC∥AB,DC=AB,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四边形AFCE是平行四边形,
∴AF=CE.
本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.
26、(1)甲厂家的总费用:y甲=140x;乙厂家的总费用:当0<x≤10时,y乙=180x,当x>10时,y乙=110x+1100;(1)详见解析.
【解析】
(1)根据题目中的数量关系即可得到甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;
(1)分别画出甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象,结合图象分析即可.
【详解】
解:(1)甲厂家的总费用:y甲=100×0.7x=140x;
乙厂家的总费用:当0<x≤10时,y乙=100×0.9x=180x,
当x>10时,y乙=100×0.9×10+100×0.6(x﹣10)
=110x+1100;
(1)甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象如图所示:
若y甲=y乙,140x=110x+1100,x=60,
根据图象,当0<x<60时,选择甲厂家;
当x=60时,选择甲、乙厂家都一样;
当x>60时,选择乙厂家.
本题主要考查了一次函数在实际生活中的应用,涉及到的知识有运用待定系数法求函数的解析式,平面直角坐标系中交点坐标的求法,函数图象的画法等,从图表及图象中获取信息是解题的关键,属于中档题.
题号
一
二
三
四
五
总分
得分
组别
成绩x分
频数(人数)
第1组
25≤x<30
4
第2组
30≤x<35
6
第3组
35≤x<40
14
第4组
40≤x<45
a
第5组
45≤x<50
10
相关试卷
这是一份2024年安阳市第九中学九年级数学第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江省天台县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。