2024年福建省福安市湾坞中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份2024年福建省福安市湾坞中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,两点都在直线上,则与的大小关系是( )
A.B.C.D.无法确定
2、(4分)将一张矩形纸片按照如图 所示的方式折叠,然后沿虚线 AB 将阴影部分剪下,再将 剪下的阴影部分纸片展开,所得到的平面图形是( )
A.直角三角形B.等腰三角形C.矩形D.菱形
3、(4分)函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1>y2的x的取值范围是( )
A.x>0B.x>1C.x>-1D.-1<x<2
4、(4分)如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是OB、OC的中点,连接AO.若AO=3cm,BC=4cm,则四边形DEFG的周长是( )
A.7cmB.9 cmC.12cmD.14cm
5、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列哪个条件不能判定▱ABCD是矩形的是( )
A.AC=BDB.OA=OBC.∠ABC=90°D.AB=AD
6、(4分)如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为( )
A.9B.12C.15D.18
7、(4分)要使式子有意义,则实数的取值范围是( )
A.B.C.D.
8、(4分)若直角三角形的两条直角边的长分别为6和8,则斜边上的中线长是( )
A.6B.5C.7D.不能确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高,,(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.
10、(4分)如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,,,直线与矩形ABCD的边有公共点,则实数b的取值范围是________.
11、(4分)若与最简二次根式是同类二次根式,则__________.
12、(4分)因式分解:______ .
13、(4分)写出一个经过二、四象限的正比例函数_________________________.
三、解答题(本大题共5个小题,共48分)
14、(12分) 写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)
(1)y随x的增大而减小;(2)图象经过点(1,﹣2).
15、(8分)某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;
(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?
16、(8分)如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.
(2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗? (填成立或者不成立).
(3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.
17、(10分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天;
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元.
18、(10分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.
(1)求梯形ABCD的面积;
(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)比较大小:(填“>”或“<”或“=”).
20、(4分)判断下列各式是否成立:
=2; =3; =4; =5
类比上述式子,再写出两个同类的式子_____、_____,你能看出其中的规律吗?用字母表示这一规律_____,
21、(4分)如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于________.
22、(4分)将直线向下平移4个单位,所得到的直线的解析式为___.
23、(4分)如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:
图中的值是__________;
第_________天时,甲、乙两个车间加工零件总数相同.
25、(10分)已知正方形的边长为4,、分别为直线、上两点.
(1)如图1,点在上,点在上,,求证:.
(2)如图2,点为延长线上一点,作交的延长线于,作于,求的长.
(3)如图3,点在的延长线上,,点在上,,直线交于,连接,设的面积为,直接写出与的函数关系式.
26、(12分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.
(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为 ;
(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?
(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE= .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的性质进行判断即可.
【详解】
解:∵直线的K=2>0,
∴y随x的增大而增大,
∵-40时,y随x的增大而增大,当K
相关试卷
这是一份2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省福州市三牧中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年福建省福安市湾坞中学数学九上期末达标检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线的开口方向是,用配方法解方程时,应将其变形为等内容,欢迎下载使用。