开学活动
搜索
    上传资料 赚现金

    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】

    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】第1页
    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】第2页
    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年福建省福州市数学九上开学复习检测模拟试题【含答案】

    展开

    这是一份2024年福建省福州市数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法正确的是( )
    A.五边形的内角和是720°
    B.有两边相等的两个直角三角形全等
    C.若关于的方程有增根,则
    D.若关于的不等式恰有2个正整数解,则的最大值是4
    2、(4分)在中,斜边,则的值为( )
    A.6B.9C.18D.36
    3、(4分)如图,在正方形外取一点,连接、、,过点作的垂线交于点.若,,下列结论:①;②;③点到直线的距离为;④;⑤正方形.其中正确的是( )
    A.①②③④B.①②④⑤C.①③④D.①②⑤
    4、(4分)如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是( )
    A.①②④B.②③C.①③④D.①④
    5、(4分)如图,在中,于点D,且是的中点,若则的长等于( )
    A.5B.6C.7D.8
    6、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( )
    A.平均数B.中位数C.方差D.众数
    7、(4分)下列各点中,不在函数 的图象上的点是( )
    A.(3,4) B.(﹣2,﹣6) C.(﹣2,6) D.(﹣3,﹣4)
    8、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 则的值为__________.
    10、(4分)如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为______.
    11、(4分)请写出一个比2小的无理数是___.
    12、(4分)如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,▱ABCD的周长是16cm,EC=2cm,则BC=______.
    13、(4分)如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.
    15、(8分)某景区的门票销售分两类:一类为散客门票,价格为元/张;另一类为团体门票(一次性购买门票张以上),每张门票价格在散客门票价格的基础上打折,某班部分同学要去该景点旅游,设参加旅游人,购买门票需要元
    (1)如果每人分别买票,求与之间的函数关系式:
    (2)如果购买团体票,求与之间的函数关系式,并写出自变量的取值范围;
    (3)请根据人数变化设计一种比较省钱的购票方式.
    16、(8分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
    (1)求△ABC的面积是____;
    (2)求直线AB的表达式;
    (3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
    (4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
    17、(10分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).
    (1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;
    (2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
    18、(10分)计算:×+÷﹣|﹣2|
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:____ .
    20、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
    21、(4分)已知y+2与x-3成正比例,且当x=0时,y=1,则当y=4时,x的值为________.
    22、(4分)在正方形中,在上,,,是上的动点,则的最小值是_____________.
    23、(4分)如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)请仅用无刻度的直尺在下列图1和图2中按要求画菱形.
    (1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;
    (2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.
    25、(10分)如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫做格点, 以格点为顶点分别按下列要求画三角形.
    (1)在图 1 中,画一个三角形,使它的三边长都是有理数;
    (2)在图 2 中,画一个直角三角形,使它们的直角边都是无理数;
    (3)在图 3 中,画一个正方形,使它的面积是 1.
    26、(12分)一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
    (1) 这个八年级的学生总数在什么范围内?
    (2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据多边形内角和定理,全等三角形的判定,分式方程的解,不等式的正整数解
    分别进行判断即可解答.
    【详解】
    五边形的内角和,所以,A错误;
    B选项所述相等的两边中,可能出现一个直角三角形的直角边和另一个三角形
    的斜边相等的情形,这种情况下两三角形不全等,所以,B错误;
    选项C中的方程的增根只能是,且应是整式方程的根,由此可得,.故C错误;
    故选D.
    此题考查多边形内角和定理,全等三角形的判定,分式方程的解,不等式的正整数解,解题关键在于掌握各性质定理.
    2、C
    【解析】
    根据勾股定理即可求解.
    【详解】
    在Rt△ABC中,AB为斜边,∴==9
    ∴=2=18
    故选C.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.
    3、D
    【解析】
    ①利用同角的余角相等,易得∠EDC=∠PDA,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠CED,结合三角形的外角的性质,易得∠CEP=90°,即可证;③过C作CF⊥DE,交DE的延长线于F,利用②中的∠BEP=90°,利用勾股定理可求CE,结合△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,再利用勾股定理可求EF、CF;⑤在Rt△CDF中,利用勾股定理可求CD2,即是正方形的面积;④连接AC,求出△ACD的面积,然后减去△ACP的面积即可.
    【详解】
    解:①∵DP⊥DE,
    ∴∠PDE=90°,
    ∴∠PDC+∠EDC=90°,
    ∵在正方形ABCD中,∠ADC=90°,AD=CD,
    ∴∠PDC+∠PDA=90°,
    ∴∠EDC=∠PDA,
    在△APD和△CED中
    ∴(SAS)(故①正确);
    ②∵,
    ∴∠APD=∠CED,
    又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,
    ∴∠CEA=∠PDE=90°,(故②正确);
    ③过C作CF⊥DE,交DE的延长线于F,
    ∵DE=DP,∠EDP=90°,
    ∴∠DEP=∠DPE=45°,
    又∵②中∠CEA=90°,CF⊥DF,
    ∴∠FEC=∠FCE=45°,
    ∵,∠EDP=90°,

    ∴,
    ∴CF=EF=,
    ∴点C到直线DE的距离为(故③不正确);
    ⑤∵CF=EF=,DE=1,
    ∴在Rt△CDF中,CD2=(DE+EF)2+CF2=,
    ∴S正方形ABCD=CD2=(故⑤正确);
    ④如图,连接AC,
    ∵△APD≌△CED,
    ∴AP=CE=,
    ∴=S△ACD﹣S△ACP=S正方形ABCD﹣×AP×CE=×()﹣××=.(故④不正确).
    故选:D.

    本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识,综合性比较强,得出,进而结合全等三角形的性质分析是解题关键.
    4、D
    【解析】
    先判断出CE=ON,AD=OM,再判断出CE=AD,即可判断出①正确;由于四边形OABC是平行四边形,所以OA不一定等于OC,即可得出②错误;先求出三角形COM的面积,再求出三角形AOM的面积求和即可判断出③错误,根据菱形的性质判断出OB⊥AC,OB与AC互相平分即可得出④正确.
    【详解】
    解:如图,过点A作AD⊥y轴于D,过点C作CE⊥y轴E,
    ∵AM⊥x轴,CM⊥x轴,OB⊥MN,
    ∴四边形ONCE和四边形OMAD是矩形,
    ∴ON=CE,OM=AD,
    ∵OB是▱OABC的对角线,
    ∴△BOC≌△OBA,
    ∴S△BOC=S△OBA,
    ∵S△BOC=OB×CE,S△BOA=OB×AD,
    ∴CE=AD,
    ∴ON=OM,故①正确;
    在Rt△CON和Rt△AOM中,ON=OM,
    ∵四边形OABC是平行四边形,
    ∴OA与OC不一定相等,
    ∴△CON与△AOM不一定全等,故②错误;
    ∵第二象限的点C在双曲线y=上,
    ∴S△CON=|k1|=-k1,
    ∵第一象限的点A在双曲线y=上,
    S△AOM=|k2|=k2,
    ∴S阴影=S△CON+S△AOM=-k1+k2=(k2-k1),
    故③错误;
    ∵四边形OABC是菱形,
    ∴AC⊥OB,AC与OB互相平分,
    ∴点A和点C的纵坐标相等,点A与点C的横坐标互为相反数,
    ∴点A与点C关于y轴对称,故④正确,
    ∴正确的有①④,
    故选:D.
    本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的性质,全等三角形的判定和性质,菱形的性质,判断出CE=AD是解本题的关键.
    5、D
    【解析】
    由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
    【详解】
    ∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
    ∴DE= AC=5,
    ∴AC=10.
    在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得
    CD= =8.
    故选D
    此题考查勾股定理,直角三角形斜边上的中线,解题关键在于利用勾股定理求值
    6、D
    【解析】
    根据题意,应该关注哪种尺码销量最多.
    【详解】
    由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.
    故选D
    本题考查了数据的选择,根据题意分析,即可完成。属于基础题.
    7、C
    【解析】
    将各选项的点逐一代入进行计算判断即可.
    【详解】
    A、当x=3时,y==4, 故(3,4)在函数图象上,正确,不符合题意;
    B、 当x=-2时,y==-6, 故(-2,-6)在函数图象上,正确,不符合题意;
    C、 当x=-2时,y==-6≠6, 故(-2,6)不在函数图象上,错误,符合题意;
    D、当x=-3时,y==-4, 故(-3,-4)在函数图象上,正确,不符合题意;
    故答案为:C.
    本题考查反比例函数的图象,属于简单题,要注意计算细心.
    8、B
    【解析】
    根据等腰三角形的性质得到根据垂直的性质得到
    根据等量代换得到又即可得到
    根据同角的余角相等即可得到.
    【详解】
    ,

    ,

    从而
    是等腰三角形,



    故选:B.
    考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD⊥DC,
    ∴AC=,
    ∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,
    ∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2
    ∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,
    ∵矩形ABCD的面积=2×1=2,
    ∴矩形AB1C1C的面积=,
    依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4
    ∴矩形AB2C2C1的面积=
    ∴矩形AB3C3C2的面积=,
    按此规律第n个矩形的面积为:

    故答案为:.
    本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.
    10、.
    【解析】
    解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,
    ∵A、C关于BD对称,
    ∴当P与P′重合时,PA′+P′E的值最小,
    ∵菱形ABCD的周长为16,面积为8,
    ∴AB=BC=4,AB·CE′=8,
    ∴CE′=2,由此求出CE的长=2.
    故答案为2.
    考点:1、轴对称﹣最短问题,2、菱形的性质
    11、(答案不唯一).
    【解析】
    根据无理数的定义写出一个即可.
    【详解】
    解:比2小的无理数是,
    故答案为:(答案不唯一).
    本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.
    12、1
    【解析】
    由平行四边形的性质和已知条件证出∠BAE=∠DEA,证出AD=DE;求出AD+DC=8,得出BC=1.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=CD,AD=BC,
    ∴∠BAE=∠DEA,
    ∵平行四边形ABCD的周长是16,
    ∴AD+DC=8,
    ∵AE是∠BAD的平分线,
    ∴∠BAE=∠DAE,
    ∴∠BAE=∠AEB,
    ∴AD=DE,
    ∵EC=2,
    ∴AD=1,
    ∴BC=1,
    故答案为:1.
    本题考查平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质和角平分线的性质.
    13、
    【解析】
    首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.
    【详解】
    解:连接EC.
    ∵四边形ABCD是矩形
    ∴AO=CO,且OE⊥AC,
    ∴OE垂直平分AC
    ∴CE=AE,S△AOE=S△COE=2,
    ∴S△AEC=2S△AOE=1.
    ∴AE•BC=1,
    又∵BC=4,
    ∴AE=2,
    ∴EC=2.
    ∴BE=
    故答案为:
    本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、.
    【解析】
    试题分析:因为CD⊥AB,所以△ACD和△BCD都是直角三角形,都利用勾股定理表示CD的长,得到方程即可求解.
    试题解析:根据题意CD2=AC2-AD2=32-(2BD)2=9-4BD2,
    CD2=BC2-BD2=22-BD2=4-BD2,
    ∴9-4BD2=4-BD2,
    解得BD2=,
    ∴BD=.
    考点:勾股定理.
    15、(1);(2)y=32x(x⩾10);(3)8人以下买散客票; 8人以上买团体票;恰好8人时,即可按10人买团体票,可买散客票.
    【解析】
    (1)买散客门票价格为40元/张,利用票价乘人数即可,即y=40x;
    (2)买团体票,需要一次购买门票10张及以上,即x≥10,利用打折后的票价乘人数即可;
    (3)根据(1)(2)分情况探讨得出答案即可.
    【详解】
    (1)散客门票:y=40x;
    (2)团体票:y=40×0.8x=32x(x⩾10);
    (3)因为40×8=32×10,
    所以当人数为8人,x=8时,两种购票方案相同;
    当人数少于8人,x8时,按团体票购票比较省钱.
    此题考查一次函数的应用,解题关键在于根据题意列出方程.
    16、 (1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).
    【解析】
    (1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;
    (2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;
    (3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;
    (1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.
    【详解】
    解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),
    ∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,
    ∴S△ABC=AC•BC=×2×1=1.
    故答案为1;
    (2)设直线AB的表达式为y=kx+b.
    ∵A点坐标是(1,3),B点坐标是(5,1),
    ∴,解得,
    ∴直线AB的表达式为y=﹣x+;
    (3)当k>2时,y=kx+2过A(1,3)时,
    3=k+2,解得k=1,
    ∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;
    当k<2时,y=kx+2过B(5,1),
    1=5k+2,解得k=﹣,
    ∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.
    综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;
    (1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.
    设直线CP的解析式为y=﹣x+n,
    ∵C点坐标是(1,1),
    ∴1=﹣+n,解得n=,
    ∴直线CP的解析式为y=﹣x+,
    ∴P(2,).
    设直线AB:y=﹣x+交y轴于点D,则D(2,).
    将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).
    综上所述,所求P点坐标是(2,)或(2,).
    故答案为(2,)或(2,).
    本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.
    17、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.
    【解析】
    【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.
    【详解】解:(1)直角坐标系如图所示.
    图书馆的坐标为B(-2,-2).
    (2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.
    【点睛】本题考核知识点:平面直角坐标系. 解题关键点:理解坐标的意义,利用坐标求出线段长度.
    18、4﹣1
    【解析】
    先根据二次根式的乘法、除法法则计算、去绝对值符号,再合并同类二次根式即可得.
    【详解】
    解:原式=1+-(1-)
    =3-1+
    =4-1.
    本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及绝对值的性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    先算括号内,再算除法即可.
    【详解】
    原式=.
    故答案为:1.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    20、m<
    【解析】
    当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
    故答案为m<1/2 .
    21、-1
    【解析】
    解:设y+2=k(x-1),
    ∵x=0时,y=1,
    ∴k(0-1)=1+2,
    解得:k=-1,
    ∴y+2=-(x-1),
    即y=-x+1,
    当y=4时,则4=-x+1,解得x=-1.
    22、
    【解析】
    根据题意画出图形,连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC的最小值,再根据勾股定理求出AE的长即可.
    【详解】
    如图所示:连接AC、AE,
    ∵四边形ABCD是正方形,
    ∴A、C关于直线BD对称,
    ∴AE的长即为PE+PC的最小值,
    ∵BE=2,CE=1,
    ∴BC=AB=2+1=3,
    在Rt△ABE中,
    ∵AE=,
    ∴PE与PC的和的最小值为.
    故答案为:.
    本题考查的是轴对称-最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解决问题的关键.
    23、
    【解析】
    根据矩形ABCD的面积、四边形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现中点四边形的面积等于原四边形的面积的一半,找到规律即可解题.
    【详解】
    解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则四边形A1B1C1D1的面积为矩形ABCD面积的,顺次连接四边形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为四边形A1B1C1D1面积的一半,即为矩形ABCD面积的,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,即为矩形ABCD面积的,故中点四边形的面积等于原四边形的面积的一半,则四边形AnBnCnDn面积为矩形ABCD面积的,
    又∵矩形ABCD的面积为1,
    ∴四边形AnBnCnDn的面积=1×=,
    故答案为:.
    本题考查了中点四边形以及矩形的性质的运用,找到连接矩形、菱形中点所得的中点四边形的面积为原四边形面积的一半是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)作图见解析;(2)作图见解析.
    【解析】
    (1)如图所示:四边形EFGH即为所求的菱形;
    (2)如图所示:四边形AECF即为所求的菱形.
    25、(1)见解析(2)见解析(3)见解析
    【解析】
    (1)根据题意可画出三边长分别为3,4,5的三角形即可;
    (2)根据题意及勾股定理即可画出边长为、、的直角三角形;
    (3)根据题意及正方形面积的特点即可画出边长为的正方形.
    【详解】
    (1)如图1,三角形为所求;
    (2)如图2,三角形为所求;
    (3)如图3,正方形为所求.
    此题主要考查网格与图形,解题的关键是熟知勾股定理的运用.
    26、(1)240人<八年级学生数≤300人
    (2)这个学校八年级学生有300人.
    【解析】
    答:八年级学生总数为人
    (1)关系式为:学生数≤300,学生数+60>300列式求值即可;
    (2)批发价为每支x元,则零售价为每支元,列方程求解
    【详解】
    解:(1)有已知,240人

    相关试卷

    2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州市福建师范大泉州附属中学九上数学开学综合测试模拟试题【含答案】:

    这是一份2024-2025学年福建省福州市福建师范大泉州附属中学九上数学开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州市第二中学九上数学开学考试模拟试题【含答案】:

    这是一份2024-2025学年福建省福州市第二中学九上数学开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map