2024年福建省龙岩市数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,则的值( )
A.B.C.–7D.7
2、(4分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
A.3、4、5B.6、8、10C.、2、D.5、12、13
3、(4分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D. 如果∠A=30°,EC=2,则下列结论不正确的是( )
A.ED=2B.AE=4
C.BC=D.AB=8
4、(4分)如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有( )个.
A.1B.2C.3D.4
5、(4分)下列图形具有稳定性的是( )
A.三角形B.四边形C.五边形D.六边形
6、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=( )
A.50°B.40°C.80°D.100°
7、(4分)如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为( )
A.B.
C.D.
8、(4分)下列下列算式中,正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:______.
10、(4分)二次根式的值是________.
11、(4分)已知关于x的一元二次方程(a2﹣1)x2+3ax﹣3=0的一个解是x=1,则a的值是_____.
12、(4分)函数y=﹣6x+5的图象是由直线y=﹣6x向_____平移_____个单位长度得到的.
13、(4分)如图,在矩形ABCD中,AC为对角线,点E为BC上一点,连接AE,若∠CAD=2∠BAE,CD=CE=9,则AE的长为_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在正方形中,点分别是上的点,且.求证:.
15、(8分)当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:
(1)分别指出参加抽测学生的视力的众数、中位数所在的范围;
(2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?
(3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?
16、(8分)某公司开发出一款新的节能产品,该产品的成本价为8元/件,该产品在正式投放市场前通过代销点进行了为期一个月30天的试销售,售价为13元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的图象,图中的折线表示日销量(件)与销售时间(天)之间的函数关系.
(1)直接写出与之间的函数解析式,并写出的取值范围.
(2)若该节能产品的日销售利润为(元),求与之间的函数解析式.日销售利润不超过1950元的共有多少天?
(3)若,求第几天的日销售利润最大,最大的日销售利润是多少元?
17、(10分)如图,在平面直角坐标系 xOy 中,点 A(0,8),点 B(6,8).
(1)尺规作图:求作一个点 P,使点 P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法)
①点 P 到 A,B 两点的距离相等;
②点 P 到∠xOy 的两边的距离相等;
(2)在(1)作出点 P 后,直接写出点 P 的坐标 .
18、(10分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.
(1)求点A,B的坐标;
(1)当P为线段AB的中点时,求d1+d1的值;
(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;
(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:
该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.
20、(4分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.
21、(4分)一粒米的重量约为0.000036克,用科学记数法表示为_____克.
22、(4分)如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为______.
23、(4分)计算:×=____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.
根据以上信息,解答下列问题:
(1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;
(2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;
(3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.
25、(10分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.
(2)结论应用:
①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.
②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.
26、(12分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
将两边平方后,根据完全平方公式化简即可得出结果.
【详解】
解:∵
∴
∴
即:
故选:D.
本题考查了完全平方公式的应用,熟悉完全平方公式的性质是解题的关键.
2、C
【解析】
解:A.32+42=52,故是直角三角形,故A选项不符合题意;
B.62+82=102,故是直角三角形,故B选项不符合题意;
C.,故不是直角三角形,故C选项符合题意;
D.52+122=132,故是直角三角形,故D选项不符合题意.
故选:C.
考点:直角三角形的判定
3、D
【解析】
根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.
【详解】
∵∠ACB=90°,∠A=30°
∴
∵BE平分∠ABC,ED⊥AB ,EC=2
∴,,故选项A正确
∴,故选项B正确
∴ ,故选项C正确
∴,故选项D错误
故答案为:D.
本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.
4、D
【解析】
由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,
则可判断各命题是否正确.
【详解】
∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°
∵△AEF是等边三角形
∴AE=AF=EF,∠EAF=∠AEF=60°
∵AD=AB,AF=AE
∴△ABF≌△ADE
∴BF=DE
∴BC-BF=CD-DE
∴CE=CF
故①正确
∵CE=CF,∠C=90°
∴EF=CE,∠CEF=45°
∴AF=CE,
∵∠AED=180°-∠CEF-∠AEF
∴∠AED=75°
故②③正确
∵AE=AF,CE=CF
∴AC垂直平分EF
故④正确
故选D.
本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.
5、A
【解析】
由题意根据三角形具有稳定性解答.
【详解】
解:具有稳定性的图形是三角形.
故选:A.
本题考查三角形具有稳定性,是基础题,难度小,需熟记.
6、C
【解析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.
【详解】
解:在Rt△ADF中,∵∠DAF=50°,
∴∠ADE=40°,
又∵DE平分∠ADC,
∴∠ADC=80°,
∴∠B=∠ADC=80°.
故选:C.
本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.
7、B
【解析】
比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.
【详解】
解:k>0时,一次函数y=﹣kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,选项B符合;
k<0时,一次函数y=﹣kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无选项符合.
故选:B.
考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
8、B
【解析】
根据二次根式的加减运算法则和二次根式的性质逐项计算化简进行判断.
【详解】
解:A项,与不是同类二次根式,不能合并,故本选项错误;
B项,,正确;
C项,,故本选项错误;
D项,,故本选项错误;
故选B.
本题考查了二次根式的性质和加减运算,正确的进行二次根式的化简和根据加减运算法则进行计算是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据分数指数幂的定义,转化为根式即可计算.
【详解】
==1.
故答案为1.
本题考查了分数指数幂,解题的关键是熟练掌握分数指数幂的定义,转化为根式进行计算,属于基础题.
10、1
【解析】
根据二次根式的性质进行化简即可得解.
【详解】
=|-1|=1.
故答案为:-1.
此题主要考查了二次根式的化简,注意:.
11、﹣1.
【解析】
直接把x=1代入进而方程,再结合a2﹣1≠2,进而得出答案.
【详解】
∵关于x的一元二次方程(a2﹣1)x2+3ax﹣3=2有一个根为x=1,
∴(a2﹣1)×1+3a×1﹣3=2,且a2﹣1≠2,
整理,得(a+1)(a﹣1)=2且(a+1)(a﹣1)≠2.
则a的值为:a=﹣1.
故答案是:﹣1.
本题考查了一元二次方程解的定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
12、上 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:函数y=-6x+1的图象是由直线y=-6x向上平移1个单位长度得到的.
故答案为:上,1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
13、
【解析】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,证明△ABE∽△ADM,根据相似三角形的性质可得AB:AD=BE:DM,证明△ADM≌△ANM,根据全等三角形的性质可得 AN=AD,MN=DM,设BE=m,DM=n,则AN=AD=BC= 9+m,MN=n,CM= 9-n,由此可得,即9n=m(9+m),根据勾股定理可得AC=,
从而可得 CN= -(9+m),在Rt△CMN中,根据勾股定理则可得(9-n)2=n2+[-(9+m)]2,继而由9n=m(9+m),可得- 2m(9+m)=2(9+m)2-2(9+m),化简得=9+2m,两边同时平方后整理得m2+6m-27=0,求得m=3或m=-9(舍去),再根据勾股定理即可求得答案.
【详解】
如图,作AM平分∠DAC,交CD于点M,过点M作MN⊥AC于点N,
则∠CAD=2∠DAM=2∠NAM,∠ANM=∠MNC=90°,
∵∠CAD=2∠BAE,
∴∠BAE=∠DAM,
∵四边形ABCD是矩形,
∴AB=CD=9,∠B=∠D=90°,AD=BC,
∴△ABE∽△ADM,
∴AB:AD=BE:DM,
又∵AM=AM,
∴△ADM≌△ANM,
∴AN=AD,MN=DM,
设BE=m,DM=n,则AN=AD=BC=CE+BE=9+m,MN=n,CM=CD-DM=9-n,
∵AB:AD=BE:DM,
∴,即9n=m(9+m),
∵∠B=90°,∴AC=,
∴CN=AC-AN=-(9+m),
在Rt△CMN中,CM2=CN2+MN2,
即(9-n)2=n2+[-(9+m)]2,
∴81-18n+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
又∵9n=m(9+m),
∴81- 2m(9+m)+n2=n2+92+(9+m)2-2(9+m)+(9+m)2,
即- 2m(9+m)=2(9+m)2-2(9+m),
∴=9+2m,
∴92+(9+m)2=(9+2m)2,
即m2+6m-27=0,
解得m=3或m=-9(舍去),
∴AE=,
故答案为:.
本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识,准确计算是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
证得∠ADE=∠FAB,由ASA证得△DAE≌△ABF,即可得出结论.
【详解】
四边形是正方形
本题考查了正方形的性质、直角三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.
15、(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)八年级视力正常的学生约有600人;(3)八年级1000名学生平均视力为4.1.
【解析】
(1)根据众数和中位数的定义,就是出现次数最多的数和中间的数(中间两数的平均数),据此即可判断;
(2)利用总人数1000乘以对应的比例即可求解;
(3)根据用样本估计总体解答即可.
【详解】
(1)众 数 在4.85≤x<5.15的范围内,
中位数在4.85≤x<5.15的范围内;
(2)依题意,八年级视力正常的学生约有人;
(3)依题意,抽样调查150名学生的平均视力为
,
由于可以用样本估计总体,
因此得到八年级1000名学生平均视力为4.1.
本题考查读频数分布表的能力和利用统计图表获取信息的能力;利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题.
16、(1);(2),18;(3)第5日的销售利润最大,最大销售利润为1650元.
【解析】
(1)根据题意和函数图象中的数据,可利用待定系数法求得y与x的函数关系式,并写出x的取值范围;
(2)根据题意和(1)中的函数关系式可以写出w与x的函数关系式,求得日销售利润不超过1950元的天数;
(3)根据题意和(2)中的关系式分别求出当时和当时的最大利润,问题得解.
【详解】
(1)当1≤x≤10时,设y与x的函数关系式为y=kx+b,
则 ,解得:,
即当1≤x≤10时,y与x的函数关系式为y=−30x+480,
当10<x≤30时,设y与x的函数关系式为y=mx+n,
则 ,解得:
即当10<x≤30时,y与x的函数关系式为y=21x−30,
综上可得, ;
(2)由题意可得:
令,解得.
令,解得.
∴(天).
答:日销售利润不超过1950元的共有18天.
(3)①当时,,∴当时,.
②当时,,∴当时,.
综上所述:当时,.
即第5日的销售利润最大,最大销售利润为1650元.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.
17、(1)见解析; (2)(3,3)
【解析】
(1)作线段AB的垂直平分线线和∠xOy的角平分线,两线的交点即为点P.
(2)根据(1)中所作的图,点P应同时满足和,直接写出点 P 的坐标即可.
【详解】
(1)如图所示,点P即为所求.
(2)∵点 A(0,8),点 B(6,8),点P在线段AB的垂直平分线上
∴点P在直线上
∵点P在∠xOy的角平分线上
∴点P在直线上
联立得
解得
∴点P的坐标(3,3)
本题考查了平面直角坐标系作图的问题,掌握垂直平分线和角平分线的性质是解题的关键.
18、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点, a=1.
【解析】
(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,
(1)求出P点坐标,即可求出d1+d1的值;.
(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.
(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.
【详解】
(1)如图所示,
令y=0时,x=1, x=0时,y =-4,
∴A(1,0)B(0,-4)
(1)当为线段的中点时,P(,) 即P(1,-1)
∴d1+d1=3
(3)d1+d1≥1
∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),
∴d1+d1=︱xp︱+︱yp︱=︱m︱+︱1m-4︱.
由题当d1+d1=3时,根据1m-4=1(m-1)可分析,
当0≤m≤1时,d1+d1=m+4-1m=3,此时解得,m=1∴得点p1(1,1).
当m>1时,同理, d1+d1=m+1m-4=3,解得m=,所以得点p1(,).
当m<0时,d1+d1=-m+4-1m=3,解得m=,即不符合m<0,故此时不存在点p.
综上所述,当d1+d1=3时点的坐标为点p1(1,1)、p1(,).
(4)设点P(m,1m-4),
∴d1=︱1m-4︱,d1=︱m︱,
∵P在线段AB上,且点A(1,0),B(0,-4),
∴0≤m≤1.即d1=4-1m,d1=m.
∵使d1+ad1=4(a为常数),
∴代入数值得4-1m+am=4,即(a-1)m=0,
根据题意在线段上存在无数个p点,所以a=1.
此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、众数
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.
【详解】
由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故答案为众数.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
20、1.
【解析】
∵AB=5,AD=12,
∴根据矩形的性质和勾股定理,得AC=13.
∵BO为Rt△ABC斜边上的中线
∴BO=6.5
∵O是AC的中点,M是AD的中点,
∴OM是△ACD的中位线
∴OM=2.5
∴四边形ABOM的周长为:6.5+2.5+6+5=1
故答案为1
21、3.6×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000036=3.6×10﹣1;
故答案为:3.6×10﹣1.
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22、2
【解析】
过点D作DE∥AC,交BC的延长线于点E,得四边形ACED是平行四边形,则DE=AC=3,CE=AD=1.根据勾股定理的逆定理即可证明三角形BDE是直角三角形.根据梯形的面积即为直角三角形BDE的面积进行计算.
【详解】
解:过点D作DE∥AC,交BC的延长线于点E,
则四边形ACED是平行四边形,
∴DE=AC=3,CE=AD=1,
在三角形BDE中,∵BD=4,DE=3,BE=5,
∴根据勾股定理的逆定理,得三角形BDE是直角三角形,
∵四边形ACED是平行四边形
∴AD=CE,
∴AD+BC=BE,
∵梯形ABCD与三角形BDE的高相等,
∴梯形的面积即是三角形BDE的面积,即3×4÷2=2,
故答案是:2.
本题考查了梯形的性质,梯形中常见的辅助线之一是平移对角线.
23、
【解析】
直接利用二次根式乘法运算法则化简得出答案.
【详解】
=.
故答案为.
此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)3,24;(2)50,28;(3)估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.
【解析】
(1)由统计图表可直接看出.
(2)被调查的男生总数=不及格的人数÷它对应的比例,条形统计图中优秀的男生人数:用总数把其他三个等级的人数全部剪掉即可.
(3)由(1)(2)可知,优秀56%,良好24%,该校八年级男生成绩等级为“良好”和“优秀”的学生人数=300×(良好占比+优秀占比).
【详解】
解:(1)3,24
(2)被调查的男生总数3÷6%=50(人),
条形统计图中优秀的男生人数:
(3)该校八年级男生成绩等级为“良好”和“优秀”的学生人数 .
答:估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.
本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1),理由见解析;(2)①见解析;②,理由见解析.
【解析】
(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,根据△ABC与△ABD的面积相等,证明AB与CD的位置关系;
(2)连结MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),进一步证明S△EFM=S△EFN,结合(1)的结论即可得到MN∥EF;
(3)连接FM、EN、MN,结合(2)的结论证明出MN∥EF,GH∥MN,于是证明出EF∥GH.
【详解】
(1)如图1,分别过点、作、,垂足分别为、,
则,
∴,
∵且,
,
∴,
∴四边形为平行四边形,
∴;
(2)①如图2,连接,,
设点的坐标为,点的坐标为,
∵点,在反比例函数的图像上,
∴,.
∵轴,轴,且点,在第一象限,
∴,,,.
∴,,
∴,
从而,由(1)中的结论可知:;
②如图
,
理由:连接,,
设点的坐标为,点的坐标为,
由(2)①同理可得:
,,
∴,
从而,由(1)中的结论可知:.
本题主要考查反比例函数的综合题,解答本题的关键是根据同底等高的两个三角形面积相等进行解答问题,此题难度不是很大,但是三问之间都有一定的联系.
26、BC边上的高AD=.
【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
【详解】
作AD⊥BC于D,
由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
解得,CD=1,
则BC边上的高AD=.
考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
题号
一
二
三
四
五
总分
得分
批阅人
视力范围分组
组中值
频数
3.95≤x<4.25
4.1
20
4.25≤x<4.55
4.4
10
4.55≤x<4.85
4.7
30
4.85≤x<5.15
5.0
60
5.15≤x<5.45
5.3
30
合计
150
尺码/厘米
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
3
11
8
6
4
2024年福建省莆田市涵江区九上数学开学经典试题【含答案】: 这是一份2024年福建省莆田市涵江区九上数学开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省龙岩市五县数学九上开学统考模拟试题【含答案】: 这是一份2024年福建省龙岩市五县数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省福州市杨桥中学九上数学开学经典试题【含答案】: 这是一份2024年福建省福州市杨桥中学九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。