2024年福建省平和第一中学数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中是正确的命题为
A.有两边相等的平行四边形是菱形
B.有一个角是直角的四边形是矩形
C.四个角相等的菱形是正方形
D.两条对角线互相垂直且相等的四边形是平行四边形
2、(4分)如果点在的图像上,那么在此图像上的点还有( )
A.(-3,2)B.(2,-3)C.(-2,-3)D.(0,0)
3、(4分)如果把分式中的、都扩大到10倍,那么分式的值( )
A.扩大10倍B.不变C.扩大20倍D.是原来的
4、(4分)多项式x2m﹣xm提取公因式xm后,另一个因式是( )
A.x2﹣1B.xm﹣1C.xmD.x2m﹣1
5、(4分)点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,当x1<0<x2时,y1>y2,则k的取值围是( )
A.kC.k<2D.k>2
6、(4分)下列等式成立的是( )
A.B.C.D.
7、(4分)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是( )
A.8B.10C.12D.14
8、(4分)用配方法解关于的一元二次方程,配方后的方程可以是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一组数据2,,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.
10、(4分)若a=,则=_____.
11、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.
12、(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.
13、(4分)若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)华联商场预测某品牌村衫能畅销市场,先用了8万元购入这种衬衫,面市后果然供不应求,于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.
(1)第一次购买这种衬衫的单价是多少?
(2)在这两笔生意中,华联商场共赢利多少元?
15、(8分)先化简,再求值:,其中 a 满足.
16、(8分)当k值相同时,我们把正比例函数与反比例函数叫做“关联函数”.
(1)如图,若k>0,这两个函数图象的交点分别为A,B,求点A,B的坐标(用k表示);
(2)若k=1,点P是函数在第一象限内的图象上的一个动点(点P不与B重合),设点P的坐标为(),其中m>0且m≠2.作直线PA,PB分别与x轴交于点C,D,则△PCD是等腰三角形,请说明理由;
(3)在(2)的基础上,是否存在点P使△PCD为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
17、(10分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:
成绩统计分析表
(1)张明第2次的成绩为__________秒;
(2)请补充完整上面的成绩统计分析表;
(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.
18、(10分)已知如图,反比例函数的图象与一次函数的图象交于点,点.
(1)求,的值;
(2)求的面积;
(3)直接写出时的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是 球队.
20、(4分)因式分解:3x3﹣12x=_____.
21、(4分)图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.
22、(4分)平行四边形ABCD中,∠A-∠B=20°,则∠A=______,∠B=_______.
23、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明.
25、(10分)如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.
(1)若的解析式为,判断此时点是否在直线上,并说明理由;
(2)当直线与边有公共点时,求的取值范围.
26、(12分)如图1,在△ABC中,∠BAC=90°,AB=AC,在△ABC内部作△CED,使∠CED=90°,E在BC上,D在AC上,分别以AB,AD为邻边作平行四边形ABFD,连接AF、AE、EF.
(1)证明:AE=EF;
(2)判断线段AF,AE的数量关系,并证明你的结论;
(3)在图(1)的基础上,将△CED绕点C逆时针旋转,请判断(2)问中的结论是否成立?若成立,结合图(2)写出证明过程;若不成立,请说明理由
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据选项逐个判断是否正确即可.
【详解】
A 错误,应该是要两条邻边相等的平行四边形是菱形.
B 错误,直角梯形有一个角是直角,但不是矩形.
C 正确.
D 错误,因为等腰梯形也有两条对角线相等且垂直.
故选C.
本题主要考查命题是否正确,关键在于举出反例.
2、C
【解析】
将代入即可求出k的值,再根据k=xy解答即可.
【详解】
解:∵点在反比例函数的图象上,
∴k=3×2=1,
而只有C选项代入得:k=−2×(-3)=1.
故选:C.
本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.
3、A
【解析】
利用分式的基本性质即可求出答案.
【详解】
用10x和10y代替式子中的x和y得:
原式=
=
∴分式的值扩大为原来的10倍.
选A.
本题考查了分式的基本性质。
4、B
【解析】
根据多项式提取公因式的方法计算即可.
【详解】
解:x2m﹣xm=xm(xm-1)
所以另一个因式为xm-1
故选B
本题主要考查因式分解,关键在于公因式的提取.
5、B
【解析】
根据当x1<0<x2时,y1>y2可得双曲线在第二,四象限,1-2k<0,列出方程求解即可.
【详解】
解:∵A(x1,y1),B(x2,y2)在反比例函数y=的图象上,
又∵x1<0<x2时,y1>y2,
∴函数图象在二四象限,
∴1﹣2k<0,
∴k>,
故选B.
本题考查了反比例函数图象上点的坐标特征,得出1-2k<0是关键,较为简单.
6、B
【解析】
根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.
【详解】
解:A. 不是同类二次根式,故A错误;
B. ,故B正确;
C. ,故B错误;
D. ,故D错误.
故答案为B.
本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.
7、C
【解析】
解:∵点D、E分别是边AB,BC的中点,
∴DE是三角形BC的中位线,AB=2BD,BC=2BE,
∴DE∥BC且
又∵AB=2BD,BC=2BE,
∴AB+BC+AC=2(BD+BE+DE),
即△ABC的周长是△DBE的周长的2倍,
∵△DBE的周长是6,
∴△ABC的周长是:6×2=12.
故选C.
8、A
【解析】
在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−2的一半的平方.
【详解】
解:把方程x2−2x−3=0的常数项移到等号的右边,得到x2−2x=3,
方程两边同时加上一次项系数一半的平方,得到x2−2x+1=3+1,
配方得(x−1)2=1.
故选:A.
本题考查了配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3,3,0.4
【解析】
根据平均数求出x=3,再根据中位数、众数、方差的定义解答.
【详解】
∵一组数据2,,4,3,3的平均数是3,
∴x=,
将数据由小到大重新排列为:2、3、3、3、4,
∴这组数据的中位数是3,众数是3,
方差为,
故答案为:3、3、0.4.
此题考查数据的分析:利用平均数求某一个数,求一组数据的中位数、众数和方差,正确掌握计算平均数、中位数、众数及方差的方法是解题的关键.
10、1
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
∵a1,∴a﹣1,∴(a﹣1)1=3,a1=1(a+1),∴a1﹣1a=1,∴原式=.
故答案为:1.
本题考查了二次根式,解题的关键是熟练运用二次根式的运算以及整式的运算,本题属于中等题型.
11、
【解析】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.
【详解】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图
按顺时针方向旋转得到
在中,
将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处)
,
,即
在和中
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.
12、1.
【解析】
试题解析:∵由题意可知,AQ是∠DAB的平分线,
∴∠DAQ=∠BAQ.
∵四边形ABCD是平行四边形,
∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,
∴∠DAQ=∠DAQ,
∴△AQD是等腰三角形,
∴DQ=AD=2.
∵DQ=2QC,
∴QC=DQ=,
∴CD=DQ+CQ=2+=,
∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.
故答案为1.
13、﹣1
【解析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.
【详解】
∵ab=-1,a+b=1,
∴a1b+ab1=ab(a+b)
=-1×1
=-1.
故答案为-1.
此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)第一批购入衬衫的单价为每件41元.(2)两笔生意中华联商场共赢利91261元.
【解析】
(1)设第一批购入的衬衫单价为x元/件,根据题目中的等量关系“第一批衬衫的数量×2=第二批衬衫的数量”可列方程,解方程即可.
(2)在(1)的基础上可求出两次进货的数量以及每件的单价,在这两笔生意中,华联商场共赢利分三部分,第一批衬衫的盈利和第二批衬衫两部分的盈利,根据每件利润×件数=总利润分别求出这三部分的盈利相加即可得在这两笔生意中,华联商场共赢利的钱数.
【详解】
(1)设第一批购入的衬衫单价为x元/件,根据题意得,
.
解得:x=41,经检验x=41是方程的解,
答:第一批购入衬衫的单价为每件41元.
(2)由(1)知,第一批购入了81111÷41=2111件.
在这两笔生意中,华联商场共赢利为:
2111×(58﹣41)+(2111×2-151)×(58﹣44)+151×(58×1.8﹣44)=91261元.
答:两笔生意中华联商场共赢利91261元.
考点:分式方程的应用.
15、,.
【解析】
先进行分式混合运算,再由已知得出,代入原式进行计算即可.
【详解】
原式=
=
==,
由a满足得,故原式=.
本题考查了分式的混合运算——分式的化简求值,熟练掌握运算法则以及运算顺序是解题的关键.
16、(1)点A坐标为(-k,-1),点B坐标(k,1);(2)△PCD是等腰三角形;,理由见解析;(3)不存在,理由见解析.
【解析】
(1)联立两个函数解析式即可;
(2)先求出点C和点D的坐标,然后根据两点距离公式得到PC=PD即可;
(3)过点P作PH⊥CD于H,根据等腰直角三角形的性质可得CD=2PH,可求m的值;然后再点P不与B重合即可解答.
【详解】
解:(1)∵两个函数图象的交点分别为点A和点B,
∴,解得:或
∴点A坐标为(-k,-1),点B坐标(k,1);
(2)△PCD是等腰三角形,理由如下:
∵k=1
∴点A和点B的坐标为(-1,-1)和(1,1),
设点P的坐标为(m,)
∴直线PA解析式为:
∵当y=0时,x=m-1,
∴点C的坐标为(m-1,0)
同理可求直线PB解析式为:
∵当y=0时,x=m+1,
∴点D的坐标为(m+1,0)
∴,
∴PC=PD
∴△PCD是等腰三角形;
(3)如图:过点P作PH⊥CD于H
∵△PCD直角三角形,PH⊥CD,
∴CD=2PH,
∴m+1-(m-1)=2×,解得m=1
∴点P的坐标为(1,1),
∵点B(1,1)与点函数在第一象限内的图象上的一个动点P不重合
∴不存在点P使△PCD为直角三角形.
本题属于反比例函数综合题,主要考查了反比例函数的性质、等腰直角三角形的性质、两点距离公式等知识点,掌握反比例函数的性质是解答本题的关键.
17、(1)13.4;(2)13.3 ,13.3;(3)选择张明
【解析】
根据折线统计图写出答案即可
根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.
根据平均线一样,而张明的方差较稳定,所以选择张明.
【详解】
(1)根据折线统计图写出答案即可,即13.4;
(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3 ,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;
(3)选择张明参加比赛.理由如下:
因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.
本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.
18、(1)m=-2,n=2;(2);(3)的取值范围是x≤-2或0<x≤1.
【解析】
(1)将A,B两点分别代入一次函数解析式,即可求出两点坐标.
(2)将△AOB分割为S△AOB=S△BOC+S△AOC,列式求出即可.
(3)根据函数的图像和交点坐标即可求得.
【详解】
(1)把A点坐标(1,n)代入y2=x+3,得n=2;
把B点坐标(m,-1)代入y2=x+3,得m=-2.
∴m=-2,n=2.
(2)如图,当y=0时,x+3=0,
∴C(-3,0),
∴S△AOB=S△BOC+S△AOC=×3×1+×3×2=.
(3)当时的取值范围是x≤-2或0<x≤1.
本题考查了一次函数和反比例函数的交点问题,涉及三角形的面积计算,一次函数的图像等知识点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、甲.
【解析】
试题分析:根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
解:∵S甲2<S乙2,
∴甲队整齐.
故填甲.
考点:方差;算术平均数.
20、3x(x+2)(x﹣2)
【解析】
先提公因式3x,然后利用平方差公式进行分解即可.
【详解】
3x3﹣12x
=3x(x2﹣4)
=3x(x+2)(x﹣2),
故答案为3x(x+2)(x﹣2).
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
21、乙 乙槽中铁块的高度为14cm
【解析】
根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.
【详解】
①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;
②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,
故答案为乙,乙槽中铁块的高度为14cm.
本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.
22、100°, 80°
【解析】
根据平行四边形的性质得出AD∥BC,求出∠A+∠B=180°,解方程组求出答案即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∵∠A-∠B=20°,
∴∠A=100°,∠B=80°,
故答案为:100°,80°.
本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行.
23、0.8
【解析】
根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.
【详解】
∵根据题意,易得△ADE∽△EFB,
∴BE:AE=BF:DE=EF:AD=2:1,
∴2DE=BF,2AD=EF=DE,
由勾股定理得,DE+AD=AE,
解得:DE=EF=,
故正方形的面积是 =,
故答案为:0.8
本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
利用面积关系列式即可得到答案.
【详解】
∵大正方形面积=4个小直角三角形面积+小正方形面积,
∴,
∴.
此题考查了勾股定理的证明过程,正确理解图形中各部分之间的面积关系是解题的关键.
25、(1)点在直线上,见解析;(2)的取值范围是.
【解析】
(1)把点A代入解析式,进而解答即可;
(2)求出直线经过点时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.
【详解】
解:(1)此时点在直线上,
∵正方形的边长为2
∴
∵点为中点,
∴点,,
把点的横坐标代入解析式,得,等于点的纵坐标为2.
∴此时点在直线上.
(2)由题意可得,点及点,
当直线经过点时,设的解析式为()
∴解得
∴的解析式为.
当时,
又由,可得当时,
∴当直线与边有公共点时,的取值范围是.
本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.
26、(1)证明见解析;(2)AF=AE.证明见解析;(3)AF=AE成立.证明见解析.
【解析】
(1)根据△ABC是等腰直角三角形,△CDE是等腰直角三角形,四边形ABFD是平行四边形,判定△ACE≌△FDE(SAS),进而得出AE=EF;
(2)根据∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根据AE=FE,得到△AEF是等腰直角三角形,进而得到AF=AE;
(3)延长FD交AC于K,先证明△EDF≌△ECA(SAS),再证明△AEF是等腰直角三角形即可得出结论.
【详解】
(1)如图1,
∵△ABC中,∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∵∠CED=90°,E在BC上,D在AC上,
∴△CDE是等腰直角三角形,
∴CE=CD,
∵四边形ABFD是平行四边形,
∴DF=AB=AC,
∵平行四边形ABFD中,AB∥DF,
∴∠CDF=∠CAB=90°,
∵∠C=∠CDE=45°,
∴∠FDE=45°=∠C,
在△ACE和△FDE中,
,
∴△ACE≌△FDE(SAS),
∴AE=EF;
(2)AF=AE.
证明:如图1,∵AB∥DF,∠BAD=90°,
∴∠ADF=90°,
∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,
∵△ACE≌△FDE,
∴∠DAE=∠DFE,
∴∠DFE+∠EAF+∠AFD=90°,
即△AEF是直角三角形,
又∵AE=FE,
∴△AEF是等腰直角三角形,
∴AF=AE;
(3)AF=AE仍成立.
证明:如图2,延长FD交AC于K.
∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,
∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC,
在△EDF和△ECA中,
,
∴△EDF≌△ECA(SAS),
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识的综合应用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
题号
一
二
三
四
五
总分
得分
2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省永定区第二初级中学数学九年级第一学期开学达标检测试题【含答案】: 这是一份2024年福建省永定区第二初级中学数学九年级第一学期开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】: 这是一份2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。