2024年福建省厦门市思明区厦门第一中学数学九上开学联考试题【含答案】
展开
这是一份2024年福建省厦门市思明区厦门第一中学数学九上开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD 的周长为 16 cm,AC,BD 相交于点 O,OE⊥AC交 AD 于点 E,则△DCE 的周长为( )
A.4 cmB.6 cmC.8 cmD.10 cm
2、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是( )
A.2.5B.2C.D.4
3、(4分)电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为( )
A.B.C.D.
4、(4分)若m+n-p=0,则m的值是( )
A.-3B.-1C.1D.3
5、(4分)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为( )
A.12B.14C.16D.24
6、(4分)平行四边形中,若,则的度数为( ).
A.B.C.D.
7、(4分)如图,在正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是( )
A.135°B.120°C.1.5°D.2.5°
8、(4分)使下列式子有意义的实数x的取值都满足的式子的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.
10、(4分)在一次测验中,初三(1)班的英语考试的平均分记为a分,所有高于平均分的学生的成绩减去平均分的分数之和记为m,所有低于平均分的学生的成绩与平均分相差的分数的绝对值的和记为n,则m与n的大小关系是 ______ .
11、(4分)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
12、(4分) 如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.
13、(4分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:+1=.
15、(8分)如图,已知一次函数y=x+b的图象与反比例函数y= (x0,解得x>-1,选项B错误;
选项C,,x+1≥0且1-x≥0,解得-1≤x≤1,选项C错误;
选项D, ,x-1≥0且1-x≠0,解得x>1,选项D正确.
故选D.
本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m>3.
【解析】
试题分析:因为点P在第二象限,所以,,解得:
考点:(1)平面直角坐标;(2)解不等式组
10、m=n
【解析】
根据“平均分的意义和平均分、总分之间的关系”进行分析解答即可.
【详解】
设初三(1)班这次英语考试中成绩高于平方分的有x人,低于平均分的有y人,等于平均分的有z人,则由题意可得:
a(x+y+z)=(ax+m)+(ay-n)+az,
∴ax+ay+az=az+m+ay-n+az,
∴0=m-n,
∴m=n.
故答案为:m=n.
“能够根据:全班的总分=成绩高于平均分的同学的总得分+成绩低于平均分的同学的总得分+成绩等于平均分的同学的总得分得到等式a(x+y+z)=(ax+m)+(ay-n)+az”是解答本题的关键.
11、24.
【解析】
试题分析: ∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,
即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.
考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.
12、(16,8).
【解析】
过A、C作AE⊥x轴,CF⊥x轴,根据菱形的性质可得AO=AC=BO=BC=5,再证明△AOE≌△CBF,可得EO=BF,然后可得C点坐标.
【详解】
解:过A、C作AE⊥x轴,CF⊥x轴,
∵点A的坐标是(6,8),
∴AO=10,
∵四边形AOBC是菱形,
∴AO=AC=BO=BC=10,AO∥BC,
∴∠AOB=∠CBF,
∵AE⊥x轴,CF⊥x轴,
∴∠AEO=∠CFO=90°,
在△AOE和△CBF中
∴△AOE≌△CBF(AAS),
∴EO=BF=6,
∵BO=10,
∴FO=16,
∴C(16,8).
故答案为:(16,8).
此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形四边相等.
13、=
【解析】
利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.
【详解】
解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,
∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,
∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,
∴S1=S1.
故答案为:=.
本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.
三、解答题(本大题共5个小题,共48分)
14、x=0
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:去分母得:1+x﹣2=﹣x﹣1,
解得:x=0,
经检验x=0是分式方程的解.
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
15、(1)k=−2,y=x+,;(2)(1,2);(3)(0,)
【解析】
(1)把A(-1,2)代入两个解析式即可得到结论;
(2)根据关于y轴对称的点的特点即可得到结论;
(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,解方程组得到B(-4, ),得到A′B的解析式为y=,即可得到结论.
【详解】
(1)∵一次函数y=x+b的图象与反比例函数y= (x
相关试卷
这是一份2024年福建省厦门市思明区大同中学九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024年福建省厦门市思明区大同中学九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省厦门市思明区双十中学数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限,则m的取值范围是,解答题等内容,欢迎下载使用。