终身会员
搜索
    上传资料 赚现金
    2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】
    立即下载
    加入资料篮
    2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】01
    2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】02
    2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】

    展开
    这是一份2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知,则下列结论正确的是( )
    A.B.C.D.
    2、(4分)如图,将ABC绕点A顺时针旋转70°后,得到ADE,下列说法正确的是( )
    A.点B的对应点是点EB.∠CAD=70°C.AB=DED.∠B=∠D
    3、(4分)如图,点O在ABC内,且到三边的距离相等,若∠A=60°,则∠BOC的大小为( )
    A.135°B.120°C.90°D.60°
    4、(4分)已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为( )
    A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是
    5、(4分)如图,正比例函数和一次函数的图像相交于点.当时,则( )
    A.B.C.D.
    6、(4分)下列交通标志中、既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    7、(4分)如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是( )
    A.,
    B.,
    C.,
    D.,
    8、(4分)二次根式中,字母a的取值范围是( )
    A.a<1B.a≤1C.a≥1D.a>1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G,若CD⊥AC,EF=8,EG=3,则AC的长为___________.
    10、(4分)如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.
    11、(4分)不改变分式的值,使分子、分母的第一项系数都是正数,则=_____.
    12、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
    13、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
    (2)结论应用:① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
    ② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
    15、(8分)如图,□ABCD中,在对角线BD上取E、F两点,使BE=DF,连AE,CF,过点E作EN⊥FC交FC于点N,过点F作FM⊥AE交AE于点M;
    (1)求证:△ABE≌△CDF;
    (2)判断四边形ENFM的形状,并说明理由.
    16、(8分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
    (1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
    (2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
    17、(10分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
    (1)第一批饮料进货单价多少元?
    (2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
    18、(10分)如图,在△ABC中,,,,求AB的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是_________.
    20、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
    21、(4分)已知,则________
    22、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
    23、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.
    (1)证明:四边形DEFG为菱形;
    (2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.
    25、(10分)如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为1.5米,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,落在墙上的影高为6米,求旗杆的高度.

    26、(12分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.
    (1)求直线AB的解析式及C点坐标;
    (2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
    (3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据不等式的性质,求出不等式的解集即可.
    【详解】
    解:不等式两边都除以2,
    得:,
    故选:D.
    本题考查了解一元一次不等式,能根据题意得出不等式的解集是解此题的关键.
    2、D
    【解析】
    根据旋转的性质逐项判断即得答案.
    【详解】
    解:因为将△ABC绕点A顺时针旋转70°后,得到△ADE,所以:
    A、点B的对应点是点D,不是点E,故本选项说法错误,不符合题意;
    B、∠CAD不是旋转角,不等于70°,故本选项说法错误,不符合题意;
    C、AB=AD≠DE,故本选项说法错误,不符合题意;
    D、∠B=∠D,故本选项说法正确,符合题意.
    故选:D.
    本题考查了旋转的性质,属于基础题型,熟练掌握旋转的性质是关键.
    3、B
    【解析】
    由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.
    【详解】
    ∵O到三边的距离相等
    ∴BO平分∠ABC,CO平分∠ACB
    ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°−∠A)
    ∵∠A=60°
    ∴∠OBC+∠OCB=60°
    ∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°
    故选B.
    本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.
    4、C
    【解析】
    根据二次根式的性质分析即可得出答案.
    【详解】
    解:∵+是整数,m、n是正整数,
    ∴m=2,n=5或m=8,n=20,
    当m=2,n=5时,原式=2是整数;
    当m=8,n=20时,原式=1是整数;
    即满足条件的有序数对(m,n)为(2,5)或(8,20),
    故选:C.
    本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.
    5、C
    【解析】
    由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.
    【详解】
    解:由图象知,当x>3时,y1的图象在y2上方,
    y2故答案为:D.
    本题考查了两条直线相交与平行,正确的识别图象是解题的关键.
    6、A
    【解析】
    根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    A、既是轴对称图形又是中心对称图形,故本选项正确;
    B、不是轴对称图形,也不是中心对称图形,故本选项错误;
    C、不是轴对称图形,也不是中心对称图形,故本选项错误;
    D、是轴对称图形,不是中心对称图形,故本选项错误.
    故选:A.
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    7、B
    【解析】
    根据中位数、众数的概念分别求解即可.
    【详解】
    将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
    众数是一组数据中出现次数最多的数,即8;
    故选:B
    考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
    8、C
    【解析】
    由二次根式有意义的条件可知a-1≥0,解不等式即可.
    【详解】
    由题意a-1≥0
    解得a≥1
    故选C.
    本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由三角形中位线定理得出AB=2EF=16,EF∥AB,AF=CF,CE=BE,证出GE是△BCD的中位线,得出BD=2EG=6,AD=AB-BD=10,由线段垂直平分线的性质得出CD=BD=6,再由勾股定理即可求出AC的长.
    【详解】
    ∵EF是△ABC的中位线,
    ∴AB=2EF=16,EF∥AB,AF=CF,CE=BE,
    ∴G是CD的中点,
    ∴GE是△BCD的中位线,
    ∴BD=2EG=6,
    ∴AD=AB-BD=10,
    ∵DE⊥BC,CE=BE,
    ∴CD=BD=6,
    ∵CD⊥AC,
    ∴∠ACD=90°,
    ∴AC=;
    故答案为:1.
    本题考查了三角形中位线定理、线段垂直平分线的性质、勾股定理等知识;熟练掌握三角形中位线定理,求出CD=BD是解题的关键.
    10、
    【解析】
    如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.
    【详解】
    解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.
    设最小BF的解析式为y=kx+b,则有解得
    ∴直线BF的解析式为y=x-2,
    令y=0,得到x=2.
    ∴Q(2.0)
    故答案为(2,0).
    本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型
    11、
    【解析】
    根据分式的基本性质即可求出答案.
    【详解】
    原式==,
    故答案为:
    本题考查分式的基本性质,分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.
    12、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
    【详解】
    解:∵∠ACB=90°,点D为AB的中点,
    ∴AB=2CD=16,
    ∵点E、F分别为AC、BC的中点,
    ∴EF=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    13、1
    【解析】
    根据边之间的关系,运用勾股定理,列方程解答即可.
    【详解】
    由题意可设两条直角边长分别为x,2x,
    由勾股定理得x2+(2x)2=(1)2,
    解得x1=1,x2=-1舍去),
    所以较短的直角边长为1.
    故答案为:1
    本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)AB∥CD.理由见解析;(1)①证明见解析;②MN∥EF.理由见解析.
    【解析】
    (1)分别过点C,D,作CG⊥AB,DH⊥AB,然后证明四边形CGHD为平行四边形后可得AB∥CD;(1)①连结MF,NE. 设点M的坐标为(x1,y1),点N的坐标为(x1,y1).利用反比例函数的性质结合条件得出S△EFM=S△EFN.可得MN∥EF.(3)MN∥EF. 证明与①类似.
    【详解】
    解:(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,
    则∠CGA=∠DHB=90°.
    ∴CG∥DH.
    ∵△ABC与△ABD的面积相等,
    ∴CG=DH.
    ∴ 四边形CGHD为平行四边形.
    ∴AB∥CD.
    (1)①连结MF,NE.
    设点M的坐标为(x1,y1),点N的坐标为(x1,y1).
    ∵ 点M,N在反比例函数(k>0)的图象上,
    ∴,
    ∵ME⊥y轴,NF⊥x轴
    ∴OE=y1,OF=x1.
    ∴S△EFM=
    S△EFN=.
    ∴S△EFM=S△EFN.
    由(1)中的结论可知:MN∥EF.
    ② MN∥EF. 证明与①类似,略.
    本题考查1.平行四边形的判定与性质1.反比例函数的性质,综合性较强.
    15、(1)见解析;(2)四边形ENFM是矩形.见解析.
    【解析】
    (1)根据SAS即可证明;
    (2)只要证明三个角是直角即可解决问题;
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD
    ∴∠ABD=∠CDB,又∵BE=DF,
    ∴△ABE≌△CDF(SAS).
    (2)由(1)得,∴∠AEB=∠CFD,
    ∴∠AED=∠CFB,
    ∴AE∥CF
    又∵EN⊥CF,∠AEN=∠ENF=90°,
    又∵FM⊥AE,∠FME=90°,
    ∴四边形ENFM是矩形.
    本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    16、 (1)y=t(0≤t≤) (2)6小时
    【解析】
    (1) 将点代入函数关系式, 解得, 有
    将代入, 得, 所以所求反比例函数关系式为;
    再将代入, 得,所以所求正比例函数关系式为.
    (2) 解不等式, 解得,
    所以至少需要经过6小时后,学生才能进入教室.
    17、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
    【解析】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
    【详解】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
    依题意,得:=3×,
    解得:x=4,
    经检验,x=4是原方程的解,且符合题意.
    答:第一批饮料进货单价是4元/瓶;
    (2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
    设销售单价为y元/瓶,
    依题意,得:(450+1350)y﹣1800﹣8100≥2100,
    解得:y≥1.
    答:销售单价至少为1元/瓶.
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
    18、AB=9+4.
    【解析】
    作CD⊥AB于D,据含30度的直角三角形三边的关系得到CD=,AD=9,再在Rt△BCD中根据正切的定义可计算出BD,然后把AD与BD相加即可.
    【详解】
    解:如图,过点C作CD⊥AB于点D.
    ∵在Rt△CDA中,∠A=30°,
    ∴CD=AC•sin30°=3,AD=AC×cs30°=9,
    ∵在Rt△CDB中,
    ∴BD===4.
    ∴AB=AD+DB=9+4.
    本题考查了解直角三角形.解题时,通过作CD⊥AB于D构建Rt△ACD、Rt△BCD是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    首先根据已知易求CD=1,利用角平分线的性质可得点D到AB的距离是1.
    【详解】
    ∵BC=6,BD=4,
    ∴CD=1.
    ∵∠C=90°,AD平分∠CAB,
    ∴点D到AB的距离=CD=1.
    故答案为:1.
    此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;本题比较简单,属于基础题.
    20、
    【解析】
    根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
    【详解】
    设AP,EF交于O点,
    ∵四边形ABCD为菱形,
    ∴BC∥AD,AB∥CD.
    ∵PE∥BC,PF∥CD,
    ∴PE∥AF,PF∥AE.
    ∴四边形AEFP是平行四边形.
    ∴S△POF=S△AOE.
    即阴影部分的面积等于△ABC的面积.
    ∵△ABC的面积等于菱形ABCD的面积的一半,
    菱形ABCD的面积=ACBD=5,
    ∴图中阴影部分的面积为5÷2=.
    21、
    【解析】
    ∵,∴8b=3(3a-b),即9a=11b,∴,
    故答案为.
    22、1.
    【解析】
    根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=AD,∠BAD=90°.
    ∵AB=AG,∠AGB=70°,
    ∴∠BAG=180°﹣70°﹣70°=40°,
    ∴∠DAG=90°﹣∠BAG=50°,
    ∴∠AGD=(180°﹣∠DAG)=65°,
    ∴∠BGD=∠AGB+∠AGD=1°.
    故答案为:1.
    本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.
    23、1.
    【解析】
    根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.
    【详解】
    解:数据1出现了3次,次数最多,所以这组数据的众数是1.
    故答案为:1.
    众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)当AC=AB时,四边形DEFG为正方形,证明见解析
    【解析】
    (1)利用三角形中位线定理推知ED∥FG,ED=FG,则由“对边平行且相等的四边形是平行四边形”证得四边形DEFG是平行四边形,同理得EF=HA=BC=DE,可得结论;
    (2)AC=AB时,四边形DEFG为正方形,通过证明△DCB≌△EBC(SAS),得HC=HB,证明对角线DF=EG,可得结论.
    【详解】
    (1)证明:∵D、E分别为AC、AB的中点,
    ∴ED∥BC,ED=BC.
    同理FG∥BC,FG=BC,
    ∴ED∥FG,ED=FG,
    ∴四边形DEFG是平行四边形,
    ∵AE=BE,FH=BF,
    ∴EF=HA,
    ∵BC=HA,
    ∴EF=BC=DE,
    ∴▱DEFG是菱形;
    (2)解:猜想:AC=AB时,四边形DEFG为正方形,
    理由是:∵AB=AC,
    ∴∠ACB=∠ABC,
    ∵BD、CE分别为AC、AB边上的中线,
    ∴CD=AC,BE=AB,
    ∴CD=BE,
    在△DCB和△EBC中,

    ∴△DCB≌△EBC(SAS),
    ∴∠DBC=∠ECB,
    ∴HC=HB,
    ∵点G、F分别为HC、HB的中点,
    ∴HG=HC,HF=HB,
    ∴GH=HF,
    由(1)知:四边形DEFG是菱形,
    ∴DF=2FH,EG=2GH,
    ∴DF=EG,
    ∴四边形DEFG为正方形.
    故答案为(1)证明过程见解析;(2)当AC=AB时,四边形DEFG为正方形.
    本题考查了平行四边形、矩形的判定、菱形的判定、正方形的判定、三角形的中位线性质定理,三角形中线的性质及等腰三角形的性质,其中三角形的中位线的性质定理为证明线段相等和平行提供了依据.
    25、20米.
    【解析】
    过C作CE⊥AB于E,首先证明四边形CDBE为矩形,可得BD=CE=21,CD=BE=2,设AE=x,则=,求出x即可解决问题.
    【详解】
    如图,过C作CE⊥AB于E.
    ∵CD⊥BD,AB⊥BD, ∴∠EBD=∠CDB=∠CEB=90°,∴四边形CDBE为矩形,
    ∴BD=CE=21 ,CD=BE=6 ,设AE=x , 则=,解得:x=1.
    故旗杆高AB=AE+BE=1+6=20 (米).
    答:旗杆的高度为20米.
    本题考查了相似三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用物长:影长=定值,构建方程解决问题,属于中考常考题型.
    26、(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,1);(3)点P的坐标(,)
    【解析】
    (1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
    (2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;
    (3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
    【详解】
    解:(1)∵+(n﹣12)2=1,
    ∴m=6,n=12,
    ∴A(6,1),B(1,12),
    设直线AB解析式为y=kx+b,
    则有,解得,
    ∴直线AB解析式为y=-2x+12,
    ∵直线AB过点C(a,a),
    ∴a=-2a+12,∴a=4,
    ∴点C坐标(4,4).
    (2)过点C作CD⊥AB交x轴于点D,如图1所示,
    设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,
    ∴直线CD解析式为y=x+2,
    ∴点D坐标(-4,1).
    (3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
    图2
    ∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,
    ∵×(-)=-1,
    ∴直线CE⊥CF,
    ∵EC=2,CF=2,
    ∴EC=CF,
    ∴△FCE是等腰直角三角形,
    ∴∠FEC=45°,
    ∵直线FE解析式为y=-5x-2,
    由解得,
    ∴点P的坐标为().
    本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.
    题号





    总分
    得分
    批阅人
    温度/℃
    22
    24
    26
    29
    天数
    2
    1
    3
    1
    相关试卷

    2024年福建省厦门外国语海沧附属学校九上数学开学考试模拟试题【含答案】: 这是一份2024年福建省厦门外国语海沧附属学校九上数学开学考试模拟试题【含答案】,共19页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。

    2024年福建省厦门市思明区大同中学九上数学开学统考试题【含答案】: 这是一份2024年福建省厦门市思明区大同中学九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省龙岩市五县数学九上开学统考模拟试题【含答案】: 这是一份2024年福建省龙岩市五县数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map