2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正比例函数的图像与反比例函数的图像交于A、B两点.点C在轴负半轴上,AC=AO,△ACO的面积为8. 则的值为()
A.-4B.﹣8C.4D.8
2、(4分)关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为( )
A.﹣5B.﹣2C.0D.﹣8
3、(4分)一组数据从小到大排列为1,2,4,x,6,1.这组数据的中位数是5,那么这组数据的众数为( )
A.4 B.5 C.5.5 D.6
4、(4分)当a<0,b<0时,-a+2-b可变形为( )
A.B.-C.D.
5、(4分)小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是( )
A.B.
C.D.
6、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:
该店主决定本周进货时,增加了一些 尺码的衬衫,影响该店主决策的统计量是( )
A.众数B.方差C.平均数D.中位数
7、(4分)定义运算*为:a*b=如:1*(-2)=-1×(-2)=2,则函数y=2*x的图象大致是( )
A.B.C.D.
8、(4分)使代数式有意义的x的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
10、(4分)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.
11、(4分)如图,在平面直角坐标系中,过点分别作轴于点,轴于点,、分别交反比例函数的图像于点、,则四边形的面积为__________.
12、(4分)若代数式在实数范围内有意义,则实数x的取值范围是__________.
13、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)把顺序连结四边形各边中点所得的四边形叫中点四边形。
(1)任意四边形的中点四边形是什么形状?为什么?
(2)符合什么条件的四边形,它的中点四边形是菱形?
(3)符合什么条件的四边形,它的中点四边形是矩形?
15、(8分)在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.
(1)如图1,当菱形DEFG的一顶点F在AB边上.
①若CG=OD时,求直线DG的函数表达式;
②求证:OED≌BGF.
(2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,FBG面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;
(3)如图3,连接GE,当GD平分∠CGE时,m的值为 .(直接写出答案).
16、(8分)解一元二次方程:(1);(2).
17、(10分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).
(1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;
(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;
(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.
18、(10分)在综合与实践课上,老师组织同学们以“矩形纸片的折叠”为主题开展数学活动.
(1)奋进小组用图1中的矩形纸片ABCD,按照如图2所示的方式,将矩形纸片沿对角线AC折叠,使点B落在点处,则与重合部分的三角形的类型是________.
(2)勤学小组将图2中的纸片展平,再次折叠,如图3,使点A与点C重合,折痕为EF,然后展平,则以点A、F、C、E为顶点的四边形是什么特殊四边形?请说明理由.
(3)创新小组用图4中的矩形纸片ABCD进行操作,其中,,先沿对角线BD对折,点C落在点的位置,交AD于点G,再按照如图5所示的方式折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M.则EM的长为________cm.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据3,2,4,5,2的众数是______.
20、(4分)如图在平面直角坐标系中,,,以为边作正方形,则点的坐标为___________.
21、(4分)若,则3a______3b;______用“”,“”,或“”填空
22、(4分)如图,反比例函数 y=的图象经过矩形 OABC 的一个顶点 B,则矩形 OABC 的面积等于___.
23、(4分)马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在“飞镖形”中,、、、分别是、、、的中点.
(1)求证:四边形是平行四边形;
(2)若,那么四边形是什么四边形?
25、(10分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?
26、(12分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据等腰三角形的性质及反比例函数k的几何意义即可求解.
【详解】
过点A作AE⊥x轴,
∵AC=AO,
∴CE=EO,∴S△ACO=2 S△ACE
∵△ACO的面积为8.
∴=8,
∵反比例函数过二四象限,
∴k=-8
故选B
此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.
2、C
【解析】
利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.
【详解】
解:依题意,关于x的一元二次方程,有两个不相等的实数根,即
△=b2﹣4ac=42+8c>1,得c>﹣2
根据选项,只有C选项符合,
故选:C.
本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式 有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1 时,方程有两个相等的实数根;③当△<1 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.
3、D
【解析】
分析:先根据中位数的定义可求得x,再根据众数的定义就可以求解.
详解:根据题意得,(4+x)÷2=5,得x=2,
则这组数据的众数为2.
故选D.
点睛:本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.
4、C
【解析】
试题解析:∵a<1,b<1,
∴-a>1,-b>1.
∴-a+2-b =()2+2+()2,
=()2.
故选C.
5、C
【解析】
根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.
【详解】
∵小李距家3千米,∴离家的距离随着时间的增大而增大.
∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合.
故选C.
本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.
6、A
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,
故影响该店主决策的统计量是众数.
故选:A.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.
7、C
【解析】
根据定义运算“*”为:a*b=,可得y=2*x的函数解析式,根据函数解析式,可得函数图象.
【详解】
y=2*x=,
x>0时,图象是y=2x的正比例函数中y轴右侧的部分;x≤0时,图象是y=-2x的正比例函数中y左侧的部分,
故选C.
本题考查了正比例函数的图象,利用定义运算“※”为:a*b=,得出分段函数是解题关键.
8、A
【解析】
根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.
【详解】
使代数式有意义,则x-10≥0,
解得:x≥10,
故选A.
本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k<1
【解析】
分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
∴n=﹣,
∴当n>1时,﹣>1,
解得,k<1,
故答案为k<1.
点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
10、
【解析】
根据勾股定理,可得AC的长,根据圆的性质,可得答案.
【详解】
由题意得
故可得,
又∵点B的坐标为2
∴M点的坐标是,
故答案为:.
此题考查勾股定理,解题关键在于结合实数与数轴解决问题.
11、1
【解析】
根据反比例函数系数k的几何意义可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.
【详解】
解:∵B、A两点在反比例函数的图象上,
∴S△DBO=S△AOC=×2=1,
∵P(2,3),
∴四边形DPCO的面积为2×3=6,
∴四边形BOAP的面积为6﹣1﹣1=1,
故答案为:1.
此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
12、
【解析】
根据分式有意义的条件即可解答.
【详解】
因为在实数范围内有意义,所以,即.
本题考查分式有意义的条件,解题的关键是知道要使得分式有意义,分母不为0.
13、21
【解析】
【分析】设建筑物高为hm,依题意得.
【详解】设建筑物高为hm,依题意得
解得,h=21
故答案为21
【点睛】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.
三、解答题(本大题共5个小题,共48分)
14、(1)平行四边形;理由见解析;(2)当原四边形的对角线相等时,它的中点四边形是菱形;(3)当原四边形的对角线互相垂直时,它的中点四边形是矩形.
【解析】
(1)连接BD、由点E、H分别为边AB、AD的中点,同理知FG∥BD、FG=BD,据此可得EH=FG、EH∥FG,即可得证;
(2)同理根据对角线相等,可知邻边相等,中点四边形是菱形;
(3)同理根据对角线互相垂直,可知有一个角是直角,中点四边形是矩形.
【详解】
(1)任意四边形的中点四边形是平行四边形,理由是:
如图1,连接BD,
∵点E、H分别为边AB、AD的中点,
∴EH∥BD、EH=BD,
∵点F、G分别为BC、DC的中点,
∴FG∥BD、FG=BD,
∴EH=FG、EH∥FG,
∴中点四边形EFGH是平行四边形;
(2)当原四边形的对角线相等时,它的中点四边形是菱形;
证明:与(1)同理:EH=FG=BD=AC=EF=HG,得它的中点四边形是菱形;
(3)当原四边形的对角线互相垂直时,它的中点四边形是矩形;
证明:与(1)同理:EH∥FG∥BD,AC∥EF∥HG,
∵AC⊥BD,
∴EH、FG分别与EF、HG垂直,
∴得它的中点四边形是矩形.
本题主要考查中点四边形的综合问题,解题的关键是熟练掌握三角形中位线定理、平行四边形和菱形的判定与性质.
15、(6)①y=2x+2;②见解析;(2)S≠6,见解析;(6)
【解析】
(6)①将x=0代入y=mx+2得y=2,故此点D的坐标为(0,2),由CG=OD=2可知点G的坐标为(2,6),将点G(2,6)代入y=mx+2可求得m=2;
②延长GF交y轴于点M,根据AAS可证明△OED≌△BGF;
(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.先证明Rt△GHF≌Rt△EOD(AAS),从而得到FH=DO=2,由三角形的面积公式可知:S=6﹣a.②当s=6时,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性质可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;
(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.由菱形的性质可知:DM⊥GM,点M为DF的中点,根据角平分线的性质可知:MD=CD=5,由中点坐标公式可知点M的纵坐标为6,得到ND=6,根据勾股定理可求得MN=,则得到点M的坐标为(,6)然后利用待定系数法求得DM、GM的解析式,从而可得到点G的坐标,最后将点G的坐标代入y=mx+2可求得m的值.
【详解】
解:(6)①∵将x=0代入y=mx+2得;y=2,
∴点D的坐标为(0,2).
∵CG=OD=2,
∴点G的坐标为(2,6).
将点G(2,6)代入y=mx+2得:2m+2=6.
解得:m=2.
∴直线DG的函数表达式为y=2x+2.
②如图6,延长GF交y轴于点M,
∵DM∥AB,
∴∠GFB=∠DMG,
∵四边形DEFG是菱形,
∴GF∥DE,DE=GF,
∴∠DMG=∠ODE,
∴∠GFB=∠ODE,
又∵∠B=∠DOE=90°,
∴△OED≌△BGF(AAS);
(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.
∵四边形DEFG为菱形,
∴GF=DE,GF∥DE.
∴∠GNC=∠EDO.
∴∠NGC=∠DEO.
∴∠HGF=∠DEO.
在Rt△GHF和Rt△EOD中,
,
∴Rt△GHF≌Rt△EOD(AAS).
∴FH=DO=2.
∴S△GBF=GB•HF=×2×(6﹣a)=6﹣a.
∴S与a之间的函数关系式为:S=6﹣a.
当s=6时,则6﹣a=6.
解得:a=5.
∴点G的坐标为(5,6).
在△DCG中,由勾股定理可知;DG==.
∵四边形GDEF是菱形,
∴DE=DG=.
在Rt△DOE中,由勾股定理可知OE=>6.
∴OE>OA.
∴点E不在OA上.
∴S≠6.
(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.
又∵四边形DEFG为菱形,
∴DM⊥GM,点M为DF的中点.
∵GD平分∠CGE,DM⊥GM,GC⊥OC,
∴MD=CD=5.
∵由(2)可知点F的坐标为5,点D的纵坐标为2,
∴点M的纵坐标为6.
∴ND=6.
在Rt△DNM中,MN==.
∴点M的坐标为(,6).
设直线DM的解析式为y=kx+2.将(,6)代入得:k+2=6.
解得:k=.
∴设直线MG的解析式为y=﹣x+b.将(,6)代入得:﹣65+b=6.
解得:b=68.
∴直线MG的解析式为y=﹣x+68.
将y=6代入得:﹣x+68=6.
解得:x=.
∴点G的坐标为(,6).
将(,6)代入y=mx+2得:m+2=6.
解得:m=.
故答案为:.
本题是一次函数综合题,考查了菱形的性质,全等三角形的性质和判定,勾股定理,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,角平分线的性质,熟练掌握全等三角形的判定与性质是解题的关键.
16、(1), ;(2)或
【解析】
(1)先变形为4x(2x-1)+2x-1=0,然后利用因式分解法解方程;
(2) 先把方程化为一般式,然后利用求根公式法解方程;
【详解】
解:(1)4x(2x-1)+2x-1=0,
(2x-1)(4x+1)=0,
2x-1=0或4x+1=0,
所以,;
(2).
3x2-5x-2=0,
△=(-5)2-4×3×(-2)=49,
所以或;
本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
17、(1)(1,1)(2)(0,﹣16)(3)
【解析】
(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.
【详解】
(1)∵点A(﹣2,6)的“级关联点”是点A1,
∴A1(﹣2×+6,﹣2+×6),
即A1(5,1).
设点B(x,y),
∵点B的“2级关联点”是B1(3,3),
∴
解得
∴B(1,1).
(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),
M′位于y轴上,
∴﹣3(m﹣1)+2m=0,
解得:m=3
∴m﹣1+(﹣3)×2m=﹣16,
∴M′(0,﹣16).
(3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,
∴N′(nx+y,x+ny),
∴ , ,
∴x=3-3n,
∴,解得.
本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
18、(1)等腰三角形(或钝角三角形);(2)菱形,理由详见解析;(3).
【解析】
(1)利用折叠的性质和角平分线定义即可得出结论;
(2)利用四边相等的四边形是菱形即可得出结论;
(3)由勾股定理可求BD的长,BG的长,AG的长,利用勾股定理和折叠的性质可得到结果。
【详解】
解:(1)等腰三角形(或钝角三角形).
提示:∵四边形ABCD是矩形,
∴,
∴.
由折叠知,,
∴,
∴重合部分的三角形是等腰三角形.
(2)菱形.
理由:如图,
连接AE、CF,设EF与AC的交点为M,
由折叠知,,,
∴,.
∵四边形ABCD是矩形,
∴,
∴,,
∴,
∴,
∴,
∴以点A,F,C,E为顶点的四边形是菱形.
(3).
提示:∵点D与点A重合,得折痕EN,,,
∴.
在中,,
∴.
∵,,
∴.
∵,
∴,
∴,
∴由勾股定理可得,
由折叠的性质可知,
∵,
∴,
∴,
∴,设,则.
由勾股定理得,即,
解得,即.
本题是四边形综合题,考查了矩形的性质,菱形的判定,等腰三角形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
从一组数据中找出出现次数最多的数就是众数,发现1出现次数最多,因此1是众数.
【详解】
解:出现次数最多的是1,因此众数是1,
故答案为:1.
本题考查了众数的意义,从一组数据中找到出现次数最多的数就是众数.
20、或
【解析】
当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).
【详解】
解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,
∵,,四边形为正方形,
∴∠BEC=∠AOB=90°,BC=AB,
∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,
∴∠BCE=∠OBA,
∴△AOB≌△BEC(AAS),
∴BE=AO=4,EC=OB=2,
∴OE=OB+BE=6,
∴此时点C的坐标为:(2,6),
同理可得当点C在AB下方时,点C的坐标为:(-2,-2),
综上所述,点C的坐标为:或
故答案为:或.
本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.
21、
【解析】
根据不等式的性质逐一进行解答即可得.
【详解】
若,根据不等式性质2,两边同时乘以3,不等号方向不变,则;
根据不等式性质3,不等式两边同时乘以-1,不等号方向改变,则有,再根据不等式性质1,两边同时加上1,不等号方向不变,则,
故答案为:;.
本题考查了不等式性质,熟练掌握不等式的性质是解题的关键.不等式的性质:不等式的两边加上或减去同一个数或式子,不等号的方向不变;不等式两边同时乘以或除以同一个不为0的正数,不等号的方向不变;不等式两边同时乘以或除以同一个不为0的负数,不等号的方向改变.
22、4
【解析】
因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.
【详解】
由于点B在反比例函数y=的图象上,k=4
故矩形OABC的面积S=|k|=4.
故答案为:4
本题考查了反比例函数系数k的几何意义,掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|是解题的关键.
23、乙
【解析】
根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵甲乙的方差分别为1.25,1.21
∴成绩比较稳定的是乙
故答案为:乙
运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)见解析.
【解析】
(1)连接AC,根据三角形的中位线的性质即可求解;
(2)根据菱形的判定定理即可求解.
【详解】
(1)证明:连接.
∵、、、分别是、、、的中点,
∴、分别是、的中位线,
∴,,,,
∴,,
∴四边形是平行四边形.
(2)解:四边形是菱形.理由如下:
∵,,,
∴,又由(1)可知四边形是平行四边形,
∴四边形是菱形.
此题主要考查平行四边形的判定与性质,解题的关键是熟知菱形的判定定理与平行四边形的的判定与性质.
25、甲优先录取.
【解析】
根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.
【详解】
解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,
乙的考评成绩是:91×30%+90×60%+90×10%=91.1.
答:甲优先录取.
本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.
26、甲机器人每小时各检测零件30个,乙机器人每小时检测零件20个。
【解析】
设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个,根据题意列出方程即可.
【详解】
解:设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个
由题得
解得
检验,符合题意,则甲:.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
尺码
39
40
41
42
43
平均每天销售数量(件)
10
12
20
12
12
考评项目
成绩/分
甲
乙
理论知识(笔试)
88
95
模拟上课
95
90
答 辩
88
90
相关试卷
这是一份2024年福建省平和第一中学数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建省晋江市南侨中学数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建省晋江市南侨中学数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。