2024年广东省广州市花都秀全中学数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)化简的结果是( )
A.B.C.D.
2、(4分)根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是( )
A.二次函数图像的对称轴是直线x=1;
B.当x>0时,y<4;
C.当x≤1时,函数值y是随着x的增大而增大;
D.当y≥0时,x的取值范围是-1≤x≤3时.
3、(4分)将方程x2+4x+3=0配方后,原方程变形为( )
A.B.C.D.
4、(4分)20190的值等于( )
A.-2019B.0C.1D.2019
5、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O. 下列结论中不一定成立的是( )
A.AB∥CDB.OA=OC
C.AC⊥BDD.AC=BD
6、(4分)若函数的图象与坐标轴有三个交点,则b的取值范围是
A.且B.C.D.
7、(4分)某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为( )
A.B.
C.D.
8、(4分)下列命题中,是真命题的是( )
A.平行四边形的对角线一定相等
B.等腰三角形任意一条边上的高线、中线和角平分线都三线合一
C.三角形的中位线平行于第三边并且等于它的一半
D.三角形的两边之和小于第三边
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.
10、(4分)方程的根是__________.
11、(4分)因式分解:x2+6x=_____.
12、(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=__________.
13、(4分)若在实数范围内有意义,则x的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:9-7+5.
15、(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.
(1)本次共抽查学生 人,并将条形图补充完整;
(2)捐款金额的众数是 平均数是 中位数为
(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?
16、(8分)已知一次函数的图象过点(3,5)与点(﹣4,﹣9),求这个一次函数的解析式.
17、(10分)(1)解分式方程:;(2)化简:
18、(10分)矩形中,对角线、交于点,点、、分别为、、的中点.
(1)求证:四边形为菱形;
(2)若,,求四边形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y千米与甲开车行驶的时间x小时之间的部分函数图象如图所示,当甲到达B地时,乙离B地的距离是_____.
20、(4分)若在实数范围内有意义,则的取值范围是____________.
21、(4分)实数64的立方根是4,64的平方根是________;
22、(4分)计算或化简
(1) (2)
23、(4分)如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
(1)补全条形统计图;
(2)求出扇形统计图中册数为4的扇形的圆心角的度数;
(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
25、(10分)如图①,在正方形中,点,分别在、上,且.
(1)试探索线段、的关系,写出你的结论并说明理由;
(2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.
26、(12分)定义:已知直线,则k叫直线l的斜率.
性质:直线(两直线斜率存在且均不为0),若直线,则.
(1)应用:若直线互相垂直,求斜率k的值;
(2)探究:一直线过点A(2,3),且与直线互相垂直,求该直线的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的性质进行化简即可.
【详解】
∵a≥1,
∴原式=.
故选C.
本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.
2、B
【解析】
试题分析:,
所以x=1时,y取得最大值4,
时,y<4,B错误
故选B.
考点:二次函数图像
点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.
3、A
【解析】
把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.
【详解】
移项得,x2+4x=−3,
配方得,x2+4x+4=−3+4,
即(x+2)2=1.
故答案选A.
本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程.
4、C
【解析】
根据任何非0数的0次幂都等于1即可得出结论.
【详解】
解:20190=1.
故选:C.
此题考查的是零指数幂的性质,掌握任何非0数的0次幂都等于1是解决此题的关键.
5、D
【解析】
直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.
【详解】
∵四边形ABCD是菱形,
∴AB∥DC,OA=OC,AC⊥BD,
无法得出AC=BD,故选项D错误,
故选D.
此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.
6、A
【解析】
抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.
解:∵函数的图象与坐标轴有三个交点,
∴,且,
解得,b<1且b≠0.
故选A.
7、C
【解析】
设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.
8、C
【解析】
根据平行四边形的性质、等腰三角形的性质、中位线定理、三边关系逐项判断即可.
【详解】
解:A、平行四边形的对角线互相平分,说法错误,故A选项错误;
B、等边三角形同一条边上的高线、中线和对角的平分线三线合一,说法错误,故B选项错误;
C、三角形的中位线平行于第三边且等于它的一半,说法正确,故C选项正确;
D、三角形的两边之和大于第三边,说法错误,故D选项错误.
故选:C.
本题考查平行四边形的性质、等边三角形的相关性质、三角形的中位线定理、三角形的三边关系,解答关键是熟记相关的性质与判定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m>1.
【解析】
根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
【详解】
∵一次函数y=(1﹣m)x+1的函数值y随x的增大而减小,∴1﹣m<0,∴m>1.
故答案为m>1.
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.
10、
【解析】
解1x4=31得x1=4或x1=-4(舍),再解x1=4可得.
【详解】
解:1x4=31,
x4=16,
x1=4或x1=-4(舍),
∴x=±1,
故答案为:x=±1.
本题考查解高次方程的能力,利用平方根的定义降幂、求解是解题的关键.
11、x(x+6)
【解析】
根据提公因式法,可得答案.
【详解】
原式=x(6+x),
故答案为:x(x+6).
本题考查了因式分解,利用提公因式法是解题关键.
12、3
【解析】
由矩形的性质可得AB=CD=6,再由折叠的性质可得AE=AB=6, 在Rt△ADE中,根据勾股定理求得AD的长即可.
【详解】
∵纸片ABCD为矩形,
∴AB=CD=6,
∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,
∴AE=AB=6,
∵E为DC的中点,
∴DE=3,
在Rt△ADE中,AE=6,DE=3,
由勾股定理可得,AD=
故答案为:.
本题考查了矩形的性质、折叠的性质及勾股定理,正确求得AE=6、DE=3是解决问题的关键.
13、x≥-2
【解析】
分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.
详解:∵x+2≥0
∴x≥-2.
故答案为x≥-2.
点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.
三、解答题(本大题共5个小题,共48分)
14、15
【解析】
先化简再计算,,,代入原式即可得出结果;
【详解】
解:原式,
.
本题主要考查了二次根式的加减运算,无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.
15、(1)50人,补图见解析;(2)10,13.1,12.5;(3)132人
【解析】
分析:
(1)由条形统计图中的信息可知,捐款15元的有14人,占被抽查人数的28%,由此可得被抽查学生的总人数为:14÷28%=50(人),由此可得捐款10元的人数为:50-9-14-7-4=16(人),这样即可补全条形统计图了;
(2)根据补充完整的条形统计图中的信息进行分析解答即可;
(3)由条形统计图中的信息计算出捐款在20元及以上的学生占捐款学生总数的比值,然后由600乘以所得比值即可得到所求结果.
详解:
(1)由条形统计图和扇形统计图中的信息可得:被抽查学生总数为:14÷28%=50(人),
∴捐款10元的人数为:50-9-14-7-4=16(人),
由此补全条形统计图如下图所示:
(2)由条形统计图中的信息可知:捐款金额的众数是:10元;
捐款金额的平均数为:(元);
捐款金额的中位数为:(元);
(3)根据题意可得:全校捐款20元及以上的人数有:(人).
点睛:知道“条形统计图和扇形统计图中相关数据间的关系及众数、中位数和平均数的定义和确定方法”是解答本题的关键.
16、y=2x﹣1.
【解析】
设一次函数的解析式是:y=kx+b,把(3,-5)与(-4,9)代入即得到一个关于k,b的方程组,解方程组即可求解.
【详解】
解:设一次函数为
因为它的图象经过,
所以 解得:
所以这个一次函数为
本题考查了待定系数法求函数的解析式,正确解方程组是关键.
17、(1);(2).
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解可得x的值,经检验是分式方程的解;
(2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.
【详解】
(1)解:
经检验:是原方程的解,所以原方程的解为.
(2)原式
.
本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.
18、(1)见解析;(2).
【解析】
(1)根据三角形的中位线定理即可证明;
(2)根据菱形的面积公式即可求解.
【详解】
(1)∵四边形是矩形,
∴,
又∵点、、分别为、、的中点,
∴,,且,
同理,,
故,
∴四边形为菱形;
(2)连接、,则,且,
,且,
由(1)知,四边形为菱形,
故.
此题主要考查菱形的判定与面积求解,解题的关键是熟知菱形的判定定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
结合题意分析函数图象:线段OC对应甲乙同时从A地出发到A返回前的过程,此过程为1小时;线段CD对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.
【详解】
解:∵甲出发到返回用时1小时,返回后速度不变,
∴返回到A地的时刻为x=2,此时y=120,
∴乙的速度为60千米/时,
设甲重新出发后的速度为v千米/时,列得方程:
(5﹣2)(v﹣60)=120,
解得:v=100,
设甲在第t小时到达B地,列得方程:
100(t﹣2)=10
解得:t=6,
∴此时乙行驶的路程为:60×6=360(千米),
乙离B地距离为:10﹣360=1(千米).
故答案为:1.
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.
20、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
21、
【解析】
根据平方根的定义求解即可.
【详解】
.
故答案为:.
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
22、(1);
【解析】
(1)根据根式的计算法则计算即可.
(2)采用平方差公式计算即可.
【详解】
(1)原式
(2)原式
本题主要考查根式的计算,这是必考题,应当熟练掌握.
23、
【解析】
解:∵四边形ABCD为正方形,∴∠ABC=90°.∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=.
故答案为.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等腰直角三角形性质.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)75°(3)3人
【解析】
(1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答
(2)用4册的人数除以总人数乘以360°即可解答
(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.
【详解】
(1)抽查的学生总数为6÷25%=24(人),
读书为5册的学生数为24-5-6-4=9(人)
则条形统计图为:
(2) =75°
(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.
此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据
25、(1)AF=DE,AF⊥DE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.
【解析】
(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角形可证得AF⊥DE.
(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.
【详解】
解:(1)AF=DE, AF⊥DE.
∵ABCD是正方形,
∴AB=AD,∠DAB=∠ABC=90°,
∵AE=BF,
∴△DAE≌△ABF,
∴AF=DE,∠BAF=∠ADE.
∵∠DAB=90°,
∴∠BAF+∠DAF=90°,
∴∠ADE+∠DAF=90°,
∴AF⊥DE.
∴AF=DE,AF⊥DE.
(2)四边形HIJK是正方形.
如下图,H、I、J、K分别是AE、EF、FD、DA的中点,
∴HI=KJ=AF,HK=IJ=ED,
∵AF=DE,
∴HI=KJ=HK=IJ,
∴四边形HIJK是菱形,
∵△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠BAF+∠AED=90°,
∴∠AOE=90°
∴∠KHI=90°,
∴四边形HIJK是正方形.
此题主要考查正方形的判定的方法与性质和菱形的判定,及全等三角形的判定等知识点的综合运用.
26、(1);(2).
【解析】
(1)根据,则的性质解答即可;
(2)设该直线的解析式为,根据,则的性质可求出k的值,把A点坐标代入可求出b值,即可得答案.
【详解】
(1)∵直线互相垂直,
∴,
∴.
(2)设该直线的解析式为,
∵直线与直线互相垂直,
∴,
解得:k=3,
把A(2,3)代入得:,
解得:b=﹣3,
∴该直线的解析式为.
本题考查了两直线相交问题,正确理解题中所给定义与性质是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广东省广州市第五中学数学九上开学达标测试试题【含答案】: 这是一份2024年广东省广州市第五中学数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省揭阳榕城真理中学数学九上开学调研试题【含答案】: 这是一份2024-2025学年广东省揭阳榕城真理中学数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省东莞市长安实验中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年广东省东莞市长安实验中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。