2024年广东省河源市东源县九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开
这是一份2024年广东省河源市东源县九年级数学第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( )
A.平均数B.方差C.众数D.中位数
2、(4分)如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH⊥CB于点H,则OH的长为( )
A.5cmB.cm
C.cmD.cm
3、(4分)以下列各组数为边长首尾相连,能构成直角三角形的一组是( )
A.4,5,6B.1,,2C.5,12,15D.6,8,14
4、(4分)下列二次根式中,最简二次根式是( )
A.B.C.D.
5、(4分)如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为( )
A.1B.C.D.
6、(4分)若代数式在实数范围内有意义,则a的取值范围是( )
A.a≠0B.a>2C.a≥2D.a≥2且a≠0
7、(4分)下列成语所描述的事件为随机事件的是( )
A.守株待兔B.水中捞月C.瓮中捉鳖D.拔苗助长
8、(4分)若代数式有意义,则x的取值范围是( )
A.x≥1B.x≥0C.x>1D.x>0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.
10、(4分)一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.
11、(4分)一组数据为0,1,2,3,4,则这组数据的方差是_____.
12、(4分)如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;
13、(4分) 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.
其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.
(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;
(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?
15、(8分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形
(1)如图,当四边形为正方形时,求,的值;
(2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.
16、(8分)某公司销售员的奖励工资由两部分组成:基本工资,每人每月2400元;奖励工资,每销售一件产品,奖励10元.
(1)设某销售员月销售产品件,他应得的工资为元,求与之间的函数关系式;
(2)若该销售员某月工资为3600元,他这个月销价了多少件产品?
(3)要使月工资超过4200元,该月的销售量应当超过多少件?
17、(10分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.
(1)求证:四边形ADCE是平行四边形;
(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.
18、(10分)如图,两块大小不等的等腰直角三角形按图1放置,点为直角顶点,点在上,将绕点顺时针旋转角度,连接、.
(1)若,则当 时,四边形是平行四边形;
(2)图2,若于点,延长交于点,求证:是的中点;
(3)图3,若点是的中点,连接并延长交于点,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)的整数部分是a,小数部分是b,则________.
20、(4分)若一组数据2,,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.
21、(4分)在一次函数y=kx+b(k≠0)中,函数y与自变量x的部分对应值如表:
则m的值为_____.
22、(4分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.
23、(4分)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是 ;
(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
25、(10分)计算:
26、(12分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.
【详解】
解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.
考核知识点:均数、众数、中位数、方差的意义.
2、C
【解析】
根据菱形的对角线互相垂直平分求出OB、OC,再利用勾股定理列式求出BC,然后根据△BOC的面积列式计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,
在Rt△BOC中,由勾股定理得,
∵OH⊥BC,
∴
∴
故选C.
本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC的面积列出方程.
3、B
【解析】
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
【详解】
解:A、,可知其不能构成直角三角形;
B、,可知其能构成直角三角形;
C、,可知其不能构成直角三角形;
D、,可知其不能构成直角三角形;
故选择:B.
本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
4、C
【解析】
根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.
【详解】
解:A、,则不是最简二次根式,本选项错误;
B、=2,则不是最简二次根式,本选项错误;
C、是最简二次根式,本选项正确;
D、,则不是最简二次根式,本选项错误.
本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.
5、D
【解析】
连接DB,作DH⊥AB于H,如图,∵四边形ABCD为菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等边三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ABH中,AH=1,AD=2,∴DH=,在△ADE和△BDF中,,∴△ADE≌△BDF,∴∠2=∠1,DE=DF,∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF为等边三角形,∴EF=DE,而当E点运动到H点时,DE的值最小,其最小值为,∴EF的最小值为.故选D.
6、C
【解析】
根据二次根式的被开方数是非负数,且分母不为0即可解答.
【详解】
解:∵代数式在实数范围内有意义,
∴a﹣1≥0,a≠0,
解得:a≥1.
故选C.
本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
7、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、是随机事件,故A符合题意;
B、是不可能事件,故B不符合题意;
C、是必然事件,故C不符合题意;
D、是不可能事件,故D不符合题意;
故选A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、A
【解析】
二次根式有意义的条件是被开方数为非负数.
【详解】
解:∵二次根式有意义,
∴x-1≥0,
∴x≥1,
故选A.
本题考查了二次根式有意义的条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.
【详解】
解:,
是、、、的平均数,
故答案为:1.
此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
10、
【解析】
首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.
【详解】
解:由翻折可知:DA′=A′E=4,
∵∠DA′E=90°,
∴DE=,
∵A′C′=2=DC′,C′G∥A′E,
∴DG=GE=,
故答案为:.
本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
11、1.
【解析】
先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.
【详解】
这组数据的平均数是:,
则方差;
故答案为:1.
此题考查方差,解题关键在于掌握运算法则
12、(3,-3)
【解析】
根据全等三角形的性质,三条对应边均相等,又顶点C与顶点D相对应,所以点D与C关于AB对称,即点D与点C对与AB的相对位置一样.
【详解】
解:∵△ABD与△ABC全等,
∴C、D关于AB对称,顶点C与顶点D相对应,即C点和D点到AB的相对位置一样.
∵由图可知,AB平行于x轴,
∴D点的横坐标与C的横坐标一样,即D点的横坐标为3.
又∵点A的坐标为(0,2),点C的坐标为(3,3),点D在第四象限,
∴C点到AB的距离为2.
∵C、D关于AB轴对称,
∴D点到AB的距离也为2,
∴D的纵坐标为-3.
故D(3,-3).
13、
【解析】
根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.
【详解】
解:∵由勾股定理得:AC2+BC2=AB2,
∴S2+S1=S3,
∵S1=5,S2=6,
∴S3=11,
∴AB=,
故答案为:.
本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=10x+3000(65≤x≤75);(2)方案1:当0<a<10时,购进A种服装75件,B种服装25件;方案2:当a=10时,按哪种方案进货都可以;方案3:当10<a<20时,购进A种服装65件,B种服装35件.
【解析】
(1)根据题意可知购进A种服装为x件,则购进B种服装为(100-x),A、B两种服装每件的利润分别为40元、30元,据此列出函数关系式,然后再根据A种服装不少于65件且购进这100件服装的费用不得超过7500元,求出x的取值范围即可;
(2)根据题意列出含有a的一次函数解析式,再根据一次函数的性质求解即可.
【详解】
解:(1)∵80x+60(100﹣x)≤7500,
解得:x≤75,
∴y=40x+30(100﹣x)=10x+3000(65≤x≤75);
(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,
方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;
方案2:当a=10时,无论怎么购进,获利相同,所以按哪种方案进货都可以;
方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.
一次函数在实际生活中的应用是本题的考点,根据题意列出一次函数解析式并熟练掌握其性质是解题的关键.
15、见详解.
【解析】
(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;
(2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.
【详解】
解:(1)如图1,过点D作DE⊥y轴于E,
∴∠AED=∠AOB=90°,
∴∠ADE+∠DAE=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAE+∠BAO=90°,
∴∠ADE=∠BAO,
在△ABO和△ADE中,
,
∴△ABO≌△ADE,
∴DE=OA,AE=OB,
∵A(0,3),B(m,0),D(n,1),
∴OA=3,OB=m,OE=1,DE=n,
∴n=3,
∴OE=OA+AE=OA+OB=3+m=1,
∴m=1;
(2))如图3,由矩形的性质可知,BD=AC,
∴BD最小时,AC最小,
∵B(m,0),D(n,1),
∴当BD⊥x轴时,BD有最小值1,此时,m=n,
即:AC的最小值为1,
连接BD,AC交于点M,过点A作AE⊥BD于E,
由矩形的性质可知,DM=BM=BD=2,
∵A(0,3),D(n,1),
∴DE=1,
∴EM=DM-DE=1,
在Rt△AEM中,根据勾股定理得,AE=,
∴m=,即:
当m=时,矩形ABCD的对角线AC的长最短为1.
此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.
16、(1);(2)他这个月销售了120件产品;(3)要使月工资超过4200元,该月的销售量应当超过180件.
【解析】
(1)根据销售员的奖励工资由两部分组成,即可得到y与x之间的函数关系式;
(2)根据销售员某月工资为3600元,列方程求解即可;
(3)根据月工资超过4200元,列不等式求解即可.
【详解】
(1)由题可得,与之间的函数关系式是:
(2)令,则,
解得:,
∴他这个月销售了120件产品;
(3)由得,
∴要使月工资超过4200元,该月的销售量应当超过180件
此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用等量关系以及不等量关系分别求解.
17、(1)见解析 (2)
【解析】
分析:(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;
(2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.
详解:(1) ∵CE∥AB,
∴∠EDA=∠DEC.
∵FA=FC ∠DFA=∠CFE,
∴△ADF≌△CEF(ASA) ,
∴AF=CF,
∴四边形ADCE是平行四边形;
(2)∵AE⊥EC,
综合(1)四边形ADCE是平行四边形,
∴四边形ADCE是矩形,
∴DE=2EF=2 ∠DCE= ,
∴DC= ,
四边形ADCE的面积=CE·DC=.
点睛:此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出△DAF≌△ECF 是解题关键.
18、(1)时,四边形是平行四边形;(2)见解析;(3)见解析.
【解析】
(1)当AC∥DE时,因为AC=DE,推出四边形ACDE是平行四边形,利用平行四边形的性质即可解决问题.
(2)如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.利用全等三角形的性质证明BN=DM,再证明△BNG≌△DMG(AAS)即可解决问题.
(3)如图3中,延长CM到K,使得MK=CM,连接AK.KM.想办法证明△BCD≌△CAK(SAS),即可解决问题.
【详解】
(1)解:如图1-1中,连接AE.
当AC∥DE时,∵AC=DE,
∴四边形ACDE是平行四边形,
∴∠ACE=∠CED,
∵CE=CD,∠ECD=90°,
∴∠CED=1°,
∴α=∠ACE=1°.
故答案为1.
(2)证明:如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.
∵CF⊥AE,DM⊥FM,
∴∠CFE=∠CMD=∠ECD=90°,
∴∠ECF+∠CEF=90°,∠ECF+∠DCM=90°,
∴∠CEF=∠DCM,∵CE=CD,
∴△CFE≌△DMC(AAS),
∴DM=CF,
同法可证:CF=BN,
∴BN=DM,
∵BN⊥FM,
∴∠N=∠DMG=90°,
∵∠BGN=∠DGM,
∴△BNG≌△DMG(AAS),
∴BG=DG,
∴点G是BD的中点.
(3)证明:如图3中,延长CM到K,使得MK=CM,连接AK.KM.
∵AM-ME,CM=MK,
∴四边形ACEK是平行四边形,
∴AK=CE=CD,AK∥CE,
∴∠KAC+∠ACE=180°,
∵∠ACE+∠BCD=180°,
∴∠BCD=∠KAC,
∵CA=CB,CD=AK,
∴△BCD≌△CAK(SAS),
∵∠ACK=∠CBD,
∵∠ACK+∠BCN=90°,
∴∠CBD+∠BCN=90°,
∴∠CNB=90°,
∴CN⊥BD.
本题属于四边形综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
【详解】
因为1
相关试卷
这是一份2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省金陵中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省中山市名校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。