![2024年广东省茂名市第二中学数学九上开学学业质量监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16201326/0-1727516935397/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省茂名市第二中学数学九上开学学业质量监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16201326/0-1727516935459/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省茂名市第二中学数学九上开学学业质量监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16201326/0-1727516935487/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广东省茂名市第二中学数学九上开学学业质量监测试题【含答案】
展开
这是一份2024年广东省茂名市第二中学数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数据中能作为直角三角形的三边长的是( )
A.1,2,2B.1,1,C.4,5,6D.1,,2
2、(4分)如图,在正方形中,为的中点,连结并延长,交边的延长线于点,对角线交于点,已知,则线段的长是( )
A.B.C.D.
3、(4分)已知正比例函数y=3x的图象经过点(1,m),则m的值为( )
A.B.3C.﹣D.﹣3
4、(4分)在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为( )
A.正五边形 B.正六边形 C.等腰梯形 D.平行四边形
5、(4分)如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )
A.–B.C.–2D.2
6、(4分)直角三角形中,斜边,,则的长度为( )
A.B.C.D.
7、(4分)在菱形中,对角线相交于点,,则的长为( )
A.B.C.D.
8、(4分)如果点A(﹣2,a)在函数yx+3的图象上,那么a的值等于( )
A.﹣7B.3C.﹣1D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形中,点为上一点,,连接.若,则的度数为__________.
10、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
11、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.
12、(4分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.
13、(4分)计算:(+2)2 017(-2)2 018=__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.
(1)文学书和科普书的单价各多少钱?
(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
15、(8分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.
解决问题:
(1)下列分式中属于真分式的是( )
A. B. C. D.
(2)将假分式分别化为带分式;
(3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.
16、(8分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.
求这个函数的表达式;
在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
17、(10分)用适当的方法解下列方程:(2x-1)(x+3)=1.
18、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和万件,现假定该公司每月投递的快件总件数的增长率相同.
求该公司投递快件总件数的月平均增长率;
如果平均每人每月可投递快递万件,那么该公司现有的16名快递投递员能否完成今年6月份的快递投递任务?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.
20、(4分)如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.
21、(4分)如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…按此规律所作的第2019个菱形的边长为______.
22、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.
23、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1) (2)
25、(10分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.
操作发现:小颖在图 1 中画出△ABC,其顶点 A,B,C 都是格点,同时构造正方形 BDEF, 使它的顶点都在格点上,且它的边 DE,EF 分别经过点 C,A,她借助此图求出了△ABC 的面积.
(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB= ,BC= ,AC
= ;△ABC 的面积为 . 解决问题:
(2)已知△ABC 中,AB=,BC=2 ,AC=5 ,请你根据小颖的思路,在图 2的正方形网格中画出△ABC,并直接写出△ABC 的面积.
26、(12分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.
(1)求证:;
(2)求的度数;
(3)若,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据勾股定理的逆定理对各选项进行逐一分析即可.
【详解】
解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;
C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;
D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.
故选D.
本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
2、D
【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.
【详解】
解:∵四边形ABCD为正方形,
∴AB=CD,AB∥CD,
∴∠ABF=∠GDF,∠BAF=∠DGF,
∴△ABF∽△GDF,
∴,
∴AF=2GF=4,
∴AG=6,
∵CG∥AB,AB=2CG,
∴CG为△EAB的中位线,
∴AE=2AG=12,
故选D.
本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.
3、B
【解析】
解:把点(1,m)代入y=3x,
可得:m=3
故选B
4、D
【解析】A.正五边形是轴对称图形,但不是中心对称图形,故A错;
B.正六边形既是轴对称图形,又是中心对称图形,故B错;
C. 等腰梯形是轴对称图形,但不是中心对称图形,故C错;
D. 平行四边形是中心对称图形,但不是轴对称图形,故D正确;
故选D.
5、A
【解析】
【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.
【详解】∵A(-2,0),B(0,1),
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=-,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
6、A
【解析】
根据题意,是直角三角形,利用勾股定理解答即可.
【详解】
解:根据勾股定理,在中,
故选A
本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.
7、D
【解析】
由菱形的对角线的性质可知OA=4,根据勾股定理即可求出OD的长.
【详解】
解:如图,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=4,
∵AD=5,
∴OD==3.
故选D.
本题考查了菱形的性质和勾股定理.
8、D
【解析】
把点A的坐标代入函数解析式,即可得a的值.
【详解】
根据题意,把点A的坐标代入函数解析式,得:a(﹣2)+3=1.
故选D.
本题考查了一次函数图象上点的坐标特征,是基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、18
【解析】
由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AD=CD,∠A=∠BCD,CD∥AB,
∵DE=AD,∠ADE=36°,
∴∠DAE=∠DEA=72°,
∵CD∥AB,
∴∠CDE=∠DEA=72°,且DE=DC=DA,
∴∠DCE=54°,
∵∠DCB=∠DAE=72°,
∴∠BCE=∠DCB-∠DCE=18°.
故答案为:18.
本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.
10、乙.
【解析】
根据方差反应了数据的波动情况,即可完成作答。
【详解】
解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。
本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。
11、3.1
【解析】
根据三角形的中位线定理解答即可.
【详解】
解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,
∴.
故答案为:3.1.
本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.
12、4
【解析】
根据等边三角形的性质和含30°的直角三角形的性质解答即可.
【详解】
∵在△ABC中,∠B=∠C=60°,
∴∠A=60°,
∵DE⊥AB,
∴∠AED=30°,
∵AD=1,
∴AE=2,
∵BC=6,
∴AC=BC=6,
∴CE=AC−AE=6−2=4.
故答案为4.
本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.
13、2
【解析】
根据同底数幂的乘法得到原式,再根据积的乘方得到原式,然后利用平方差公式计算.
【详解】
原式
.
故答案为.
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了整式的运算.
三、解答题(本大题共5个小题,共48分)
14、(1)文学书和科普书的单价分别是8元和1元.(2)至多还能购进466本科普书.
【解析】
(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:
,
解得:x=8,
经检验x=8是方程的解,并且符合题意.
∴x+4=1.
∴购进的文学书和科普书的单价分别是8元和1元.
②设购进文学书550本后至多还能购进y本科普书.依题意得
550×8+1y≤10000,
解得,
∵y为整数,
∴y的最大值为466
∴至多还能购进466本科普书.
15、(1)C;
(2),;
(3)x可能的整数值为0,-2,-4,-6.
【解析】
(1)根据真分式的定义,即可选出正确答案;
(2)利用题中的方法把分子分别变形为和,然后写成带分式即可;
(3)先把分式化为带分式,然后利用有理数的整除性求解.
【详解】
(1)A.分子的次数为2,分母的次数为1,所以错误;
B. 分子的次数为1,分母的次数为1,故错误;
C. 分子的次数为0,分母的次数为1,故正确;
D. 分子的次数为2,分母的次数为2,故错误;
所以选C;
(2),
,
(3)
∵该分式的值为整数,
∴ 的值为整数,
所以x+3可取得整数值为±3,±1,
x可能的整数值为0,-2,-4,-6.
本题主要考查分式的性质,要结合分式的基本性质依照题目中的案例,会对分式进行适当的变形.(1)根据真分式的定义判断即可;(2)可借助平方差公式,先给x2减1再加1,将它凑成平方差公式x2-1=(x+1)(x-1);(3)需将假分式等量变形成带分式,然后对取整.
16、; 详见解析;或
【解析】
(1)把x=0,y=4;x=1,y=3代入函数中,求出k、b即可;
(1)根据(1)中的表达式可以画出该函数的图象;
(3)根据图象可以直接写出所求不等式的解集.
【详解】
(1)把x=0,y=4代入得:4=,
∴b=3,
把x=1,y=3,b=3代入得:,
∴k=1,
即函数的表达式为,
(1)由题意得:,
画图象如下图:
(3)由上述图象可得:当x
相关试卷
这是一份2024年广东省潮阳区华侨中学数学九上开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建省平和第一中学数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市北京师范大附属实验中学数学九上开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)