所属成套资源:冀教版(2024)八年级数学上册教案全册
冀教版(2024)八年级数学上册第十七章特殊三角形单元整体分析教案
展开
这是一份冀教版(2024)八年级数学上册第十七章特殊三角形单元整体分析教案,共4页。
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“特殊三角形”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题.“图形的性质”强调通过实验探究、直观发现、推理论证来研究图形,在用几何直观理解几何基本事实的基础上,从基本事实出发推导图形的几何性质和定理,理解和掌握尺规作图的基本原理和方法.本章主要是通过观察与思考、操作与归纳等活动,获得“发现”,再通过演绎推理证明“发现”的探索证明过程,使学生体会通过合情推理提出猜想,运用演绎推理证明结论的数学思维,力图实现发展学生合情推理和演绎推理有机融合的目的,提高学生的逻辑推理能力.2.本单元教学内容分析 冀教版教材八年级上册第十七章“特殊三角形”,本章包括五个小节:17.1等腰三角形;17.2直角三角形;17.3勾股定理;17.4直角三角形全等的判定;17.5反证法.“特殊三角形”这一章的知识既是三角形内容的深化和拓展,又是进一步研究特殊四边形的重要工具,同时,等腰三角形的知识在今后探索线段相等、角相等、直线的垂直关系等方面有着广泛的应用;勾股定理及其逆定理不仅是数形结合思想的完美体现,更是我们今后解决数学问题和实际问题的有力工具.因此,本章起着承上启下的桥梁作用.等腰三角形的性质与判定、直角三角形的性质与判定的呈现方式,主要是通过观察与思考、操作与归纳等方法来探索和发现结论,再通过演绎推理证明结论,最后举例应用.这一方式实现了在发展学生合情推理能力的基础上,把证明作为探索活动的自然延续,较好体现了合情推理与演绎推理两种推理形式的相辅相成,实现了两种推理的有机融合.勾股定理的获得,设计了观察、计算、思考、归纳、猜想的探究活动,验证猜想的过程设计为“试着做做”和“做一做”的学生自主活动,让学生体验勾股定理发现的全过程,发展学生的推理能力和创新意识;对于勾股定理的逆定理,通过学生先操作(画直角三角形),再证明(利用全等)的方式来获得.在本章的尺规作图中,都增加了分析环节,使学生不仅要知道作图的步骤,而且还要了解作图的道理.在反证法一节中,除介绍了反证法及证明命题的一般步骤外,还运用反证法对平行线的性质定理进行了证明,体现了本套教材在内容上的完整性.同时对直角三角形全等的“斜边、直角边”定理也用反证法给出了证明,使学生从中体会反证法的价值.三、单元学情分析本单元内容是冀教版教材数学八年级上册第十七章特殊三角形,在小学阶段,学生已经对立体图形和平面图形有了初步的认识,掌握了简单图形的周长、面积、体积的计算方法,初步认识了图形的平移、旋转和轴对称,能判定物体的方位,用数对描述平面上点的位置,形成了初步的空间观念和几何直观.本章将带领学生进一步探究特殊三角形的边、角的性质.四、单元学习目标1.了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索等边三角形的性质定理和判定定理.2.探索并掌握直角三角形的性质定理,掌握有两个角互余的三角形是直角三角形.3.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题.4.探索并掌握判定直角三角形全等的“斜边、直角边”定理.5.会利用基本作图作三角形:已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形.6.通过实例体会反证法的含义.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.