![2024年广东省珠海香洲区四校联考九上数学开学教学质量检测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16203304/0-1727588445500/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省珠海香洲区四校联考九上数学开学教学质量检测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16203304/0-1727588445574/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广东省珠海香洲区四校联考九上数学开学教学质量检测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16203304/0-1727588445594/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广东省珠海香洲区四校联考九上数学开学教学质量检测模拟试题【含答案】
展开
这是一份2024年广东省珠海香洲区四校联考九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,下列哪组条件不能判定四边形ABCD是平行四边形( )
A.AB∥CD,AB=CDB.AB∥CD,AD∥BC
C.OA=OC,OB=ODD.AB∥CD,AD=BC
2、(4分)9的算术平方根是( )
A.B.C.D.
3、(4分)PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )
A.0.25×10-5 B.2.5×10-5B.2.5×10-6C.2.5×10-7
4、(4分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克( )
A.7元B.6.8元C.7.5元D.8.6元
5、(4分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
A.B.C.D.
6、(4分)甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是( )
A.甲B.乙C.丙D.丁
7、(4分)已知关于的分式方程无解,则的值为( )
A.B.C.D.或
8、(4分)若有意义,则x的取值范围是
A.且B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为_________.
10、(4分)如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.
11、(4分)试写出经过点,的一个一次函数表达式:________.
12、(4分)一元二次方程化成一般式为________.
13、(4分)如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果点A1(1,1),那么点A2019的纵坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.
15、(8分)解方程:
(1)
(2)2x2﹣4x+1=0
16、(8分)已知:如图,四边形中,分别是的中点.
求证:四边形是平行四边形.
17、(10分) (1)分解因式:
(2)解方程:
18、(10分)已知T.
(1)化简T;
(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于的方程有解,则的值为____________.
20、(4分)如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.
21、(4分)如果关于的不等式组无解,则的取值范围是_____.
22、(4分)若代数式的值大于﹣1且小于等于2,则x的取值范围是_____.
23、(4分)要使分式有意义,x需满足的条件是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,学校应如何购买更优惠?
25、(10分).
26、(12分)如图,在中,点,是直线上的两点,,连结,,,.
(1)求证:四边形是平行四边形.
(2)若,,,四边形是矩形,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
【详解】
根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.
故选D.
此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
2、C
【解析】
根据算术平方根的定义:正数的平方根有两个,它们为相反数,其中非负的平方根,就是这个数的算术平方根。.
【详解】
解:∵12=9,
∴9的算术平方根是1.
故选:C.
本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.
3、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
所以:0.0000025=2.5×10-6;
故选C.
【考点】科学记数法—表示较小的数.
4、B
【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.
【详解】
售价应定为:≈6.8(元);
故选B.
本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.
5、C
【解析】
由实际问题抽象出方程(行程问题).
【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
6、A
【解析】
比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.
【详解】
∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,
∴,
∴成绩最稳定的同学是甲.
故选A.
此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.
7、D
【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x的值,代入整式方程计算即可求出m的值.
【详解】
解:去分母得:3−2x−9+mx=−x+3,
整理得:(m−1)x=9,
当m−1=0,即m=1时,该整式方程无解;
当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,
把x=3代入整式方程得:3m−3=9,
解得:m=4,
综上,m的值为1或4,
故选:D.
此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
8、A
【解析】
根据二次根式有意义的条件和分式有意义的条件即可求出答案.
【详解】
由题意可知:,
解得:且,
故选A.
本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.
【详解】
解:∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,
∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,
∴阴影部分的面积=S菱形ABCD=×(×10×6)=1.
故答案为:1.
本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.
10、6
【解析】
根据题意,分析P的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求出AE,即可求解.
【详解】
根据题意,当P在BC上时,三角形的面积增大,结合图2可得BC=4;
当P在CD上时,三角形的面积不变,结合图2可得CD=3;
当P在AD上时,三角形的面积变小,结合图2可得AD=5;
过D作DE⊥AB于E,
∵AB∥CD,AB⊥BC,
∴四边形DEBC为矩形,
∴EB=CD=3,DE=BC=4,
∴AE=
∴AB=AE+EB=6.
此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.
11、y=x+1
【解析】
根据一次函数解析式,可设y=kx+1,把点代入可求出k的值;
【详解】
因为函数的图象过点(1,2),
所以可设这个一次函数的解析式y=kx+1,把(1,2)代入得:2=k+1,
解得k=1,
故解析式为y=x+1
此题考查一次函数解析式,解题的关键是设出解析式;
12、
【解析】
直接去括号,然后移项,即可得到答案.
【详解】
解:∵,
∴,
∴,
故答案为:.
本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.
13、
【解析】
设点A2,A3,A4…,A1坐标,结合函数解析式,寻找纵坐标规律,进而解题.
【详解】
∵A1(1,1)在直线y=x+b,
∴b=,
∴y=x+,
设A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A1(x1,y1)
则有 y2=x2+,
y3=x3+,
…
y1=x1+.
又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
…
x1=2y1+2y2+2y3+…+2y2+y1.
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
y4= y3
…
y1=y2
又∵y1=1
∴y2= y3=()2
y4=()3
…
y1=()2
故答案为()2.
此题主要考查了 一次函数点坐标特点;等腰直角三角形斜边上高等于斜边长一半;找规律.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
试题分析:先根据菱形对角线互相垂直平分求得OA、OB的值,根据勾股定理求得AB的值,由菱形面积公式的两种求法列式可以求得高DH的长.
试题解析:
解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,
∴AC⊥BD,OA= AC=4cm,OB= BD=3cm,
∴Rt△AOB中,AB===5,
∵DH⊥AB,
∵菱形ABCD的面积S= AC•BD=AB•DH,
×6×8=5DH,
∴DH=.
点睛:本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.
15、(1)无解;(2)x1=,x2=.
【解析】
(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
(2)移项,系数化成1,配方,开方,即可的两个方程,求出方程的解即可.
【详解】
解:(1)方程两边都乘以x(x﹣4)得:3x﹣4+x(x﹣4)=x(x﹣2),
解得:x=4,
检验:当x=4时,x(x﹣4)=0,所以x=4不是原方程的解,
即原方程无解;
(2)2x2﹣4x+1=0,
2x2﹣4x=﹣1,
x2﹣2x=﹣,
x2﹣2x+1=﹣+1,
(x﹣1)2=,
x﹣1=,
x1=,x2=.
本题考查了解分式方程和解一元二次方程,能把分式方程转化成整式方程是解(1)的关键,并且要注意检验;能正确配方是解(2)的关键.
16、见解析.
【解析】
连接BD,利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.
【详解】
证明:如图,连接BD.
∵F,G分别是BC,CD的中点,
所以FG∥BD,FG=BD.
∵E,H分别是AB,DA的中点.
∴EH∥BD,EH=BD.
∴FG∥EH,且FG=EH.
∴四边形EFGH是平行四边形.
此题主要考查了中点四边形,关键是掌握平行四边形的判定和三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.
17、(1);(2)无解
【解析】
(1)先提公因式a,然后利用平方差公式进行因式分解即可;
(2)先找到最简公分母,然后通过去分母,化简计算,求出方程的解,最后还要进行检验即可.
【详解】
解:(1)
=
=;
(2)
经检验,时,,
∴原方程无解.
本题考查了因式分解和解分式方程,解题的关键是熟练掌握因式分解的方法和解分式方程的步骤,注意:解分式方程必须要验根.
18、(1);(2).
【解析】
(1)原式通分并利用同分母分式的加法法则计算即可求出值;
(2)由正方形的面积求出边长a的值,代入计算即可求出T的值.
【详解】
(1)T;
(2)由正方形的面积为9,得到a=3,则T.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.
【详解】
去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.
故答案为:1.
本题考查了分式方程的解,始终注意分母不为0这个条件.
20、
【解析】
如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.
【详解】
如图,连接CF,作FM⊥BC于M,FN⊥AC于N.
∵∠FNC=∠MCN=∠FMC=90°,
∴四边形CMFN是矩形,
∴∠MFN=∠AFE=90°,
∴∠AFN=∠MFE,
∵AF=FE,∠FNA=∠FME=90°,
∴△FNA≌△FME(AAS),
∴FM=FM,AN=EM,
∴四边形CMFN是正方形,
∴CN=CM,CF=CM,∠FCN=∠FCM=45°,
∵AC+CE=CN+AN+CM-EM=2CM,
∴CF= (AC+CE).
∴点F在射线CF上运动(CF是∠ACB的角平分线),
当点E与D重合时,CF=(AC+CD)=2,
当点E与B重合时,CF=(AC+CB)=,
∵-2= ,
∴点F的运动的路径长为.
故答案为:.
此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.
21、a≤1.
【解析】
分别求解两个不等式,当不等式“大大小小”时不等式组无解,
【详解】
解:
∴不等式组的解集是
∵不等式组无解,即,
解得:
本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.
22、﹣1≤x<1.
【解析】
先根据题意得出关于x的不等式组,求出x的取值范围即可.
【详解】
解:根据题意,得:
解不等式①,得:x<1,
解不等式②,得:x≥-1,
所以-1≤x<1,
故答案为:-1≤x<1.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
23、x≠1
【解析】
试题分析:分式有意义,分母不等于零.
解:当分母x﹣1≠0,即x≠1时,分式有意义.
故答案是:x≠1.
考点:分式有意义的条件.
二、解答题(本大题共3个小题,共30分)
24、当购买的餐椅大于等于9少于32把时,到甲商场购买更优惠.
【解析】
试题分析:设学校购买12张餐桌和把餐椅,到购买甲商场的费用为元,到乙商场购买的费用为元,根据“甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售”即可列不等式求解.
解:设学校购买12张餐桌和把餐椅,到购买甲商场的费用为元,到乙商场购买的费用为元,则有
当,即时,
答:当学校购买的餐椅少于32把时,到甲商场购买更优惠。
考点:一元一次不等式的应用
点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.
25、
【解析】
先根据平方差和完全平方公式化简,再进行加减运算即可.
【详解】
解:原式=
=
=
本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.
26、 (1)见解析;(2)
【解析】
(1)连结交于点,由四边形ABCD是平行四边形,可得OA=OC,OD=OB,又因为,从而OE=OF,可证四边形是平行四边形;
(2)由勾股定理可求出BD的长,进而求出OD的长,再由勾股定理求出AO的长,根据矩形的性质可知AO=EO,从而可求出DE的长.
【详解】
(1)连结交于点,
∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵,
∴OE=OF,
四边形是平行四边形;
(2),,,
,
,
.
四边形是矩形,
,,,
,
.
本题考查了平行四边形的判定与性质,矩形的性质,勾股定理等知识,熟练掌握平行四边形的判定与性质是解答(1)的关键,熟练掌握矩形的性质是解(2)的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年广东省香洲区四校联考数学九上开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省淄博周村区五校联考九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省茂名电白区七校联考数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。