![2024年广西防城港市九上数学开学质量检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16203307/0-1727588462739/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广西防城港市九上数学开学质量检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16203307/0-1727588462767/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广西防城港市九上数学开学质量检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16203307/0-1727588462780/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广西防城港市九上数学开学质量检测试题【含答案】
展开
这是一份2024年广西防城港市九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,是中心对称但不是轴对称图形的有( )
A.1个B.2个C.3个D.4个
2、(4分)下列给出的四边形中的度数之比,其中能够判定四边形是平行四边形的是( )
A.1:2:3:4B.2:3:2:3C.2:2:3:4D.1:2:2:1
3、(4分)如图,在矩形中,对角线,交于点,已知,,则的长为( )
A.2B.4C.6D.8
4、(4分)已知四边形,有下列四组条件:①,;②,;③,;④,.其中不能判定四边形为平行四边形的一组条件是( )
A.①B.②C.③D.④
5、(4分)函数的图象不经过第二象限,则的取值范围是( )
A.B.C.D.
6、(4分)下列事件中,属于确定事件的是( )
A.抛掷一枚质地均匀的骰子,正面向上的点数是6
B.抛掷一枚质地均匀的骰子,正面向上的点数大于6
C.抛掷一枚质地均匀的骰子,正面向上的点数小于6
D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次
7、(4分)下列各组数中,是勾股数的为( )
A.B.0.6,0.8,1.0
C.1,2,3D.9,40,41
8、(4分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是___________.
10、(4分)若,则a与b的大小关系为a_____b(填“>”、“<”或“=”)
11、(4分)已知一次函数和函数,当时,x的取值范围是______________.
12、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.
13、(4分)一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,是边上一点,是的中点,过点作的平行线交的延长线于点,且,连接.
(1)求证:是的中点;
(2)当满足什么条件时,四边形是正方形,并说明理由.
15、(8分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等
(1)求A、B两种零件的单价;
(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?
16、(8分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
17、(10分)如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.
(1)连接,求证:是等边三角形;
(2)求,的长;
(3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?
18、(10分)如图,在平行四边形ABCD中,点E.F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.
求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.
20、(4分)已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为___.
21、(4分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.
22、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
23、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE,DF.
(1)试判断四边形AEDF的形状,并证明你的结论;
(2)若∠BAC=60°,AE=6,求四边形AEDF的面积;
(3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.
25、(10分)如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;
①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
26、(12分)一次函数y =kx+b()的图象经过点,,求一次函数的表达式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:第1个图形,是轴对称图形,不是中心对称图形,故错误;
第2个图形,不是轴对称图形,是中心对称图形,故正确;
第3个图形,不是轴对称图形,是中心对称图形,故正确;
第4个图形,是轴对称图形,也是中心对称图形,故错误;
故选B.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、B
【解析】
根据平行四边形的对角相等即可判断.
【详解】
∵平行四边形的对角相等,
∴的度数之比可以是2:3:2:3
故选B
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角相等.
3、B
【解析】
根据矩形性质推出AO=OB,求出∠AOB=60°,得出等边三角形AOB,求出AO,即可求出答案.
【详解】
∵四边形ABCD是矩形,
∴AC=2AO,BD=2BO,AC=BD,
∴AO=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴AO=OB=AB=2,
∴AC=2AO=4,
故选B.
本题考查了矩形性质,等边三角形的性质和判定的应用,关键是求出AO的长和得出AC=2AO.
4、D
【解析】
①由有两组对边分别平行的四边形是平行四边形,可证得四边形ABCD是平行四边形;
②由有两组对边分别相等的四边形是平行四边形,可证得四边形ABCD是平行四边形;
③由一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,
④由已知可得四边形ABCD是平行四边形或等腰梯形.
【详解】
解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判定这个四边形是平行四边形;
②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判定这个四边形是平行四边形;
③根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知③能判定这个四边形是平行四边形;
④由一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;
故给出的四组条件中,①②③能判定这个四边形是平行四边形,
故选:D.
此题考查了平行四边形的判定.注意熟记平行四边形的判定定理是解此题的关键.
5、A
【解析】
根据图象在坐标平面内的位置关系确定的取值范围,从而求解.
【详解】
解:一次函数的图象不经过第二象限,
则可能是经过一三象限或一三四象限,
经过一三象限时,k-2=1;
经过一三四象限时,k-2<1.
故.
故选:A.
本题主要考查一次函数图象在坐标平面内的位置与、的关系.解答本题注意理解:直线所在的位置与、的符号有直接的关系.时,直线必经过一、三象限;时,直线必经过二、四象限;时,直线与轴正半轴相交;时,直线过原点;时,直线与轴负半轴相交.
6、B
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;
B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;
C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;
D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;
故选:B.
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、D
【解析】
根据勾股数的定义进行分析,从而得到答案.
【详解】
解:A、不是,因()2+()2≠()2;
B、不是,因为它们不是正整数
C、不是,因为12+22≠32;
D、是,因为92+402=412;且都是正整数.
故选:D.
此题考查勾股定理的逆定理和勾股数的定义,解题关键在于掌握三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
8、A
【解析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.
【详解】
解:设有x个队参赛,根据题意,可列方程为:
x(x﹣1)=36,
故选:A.
此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7.2cm或cm
【解析】
①边长3.6cm为短边时,
∵四边形ABCD为矩形,
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB=3.6cm,
∴AC=BD=2OA=7.2cm;
②边长3.6cm为长边时,
∵四边形ABCD为矩形
∴OA=OB,
∵两对角线的夹角为60°,
∴△AOB为等边三角形,
∴OA=OB=AB,BD=2OB,∠ABD=60°,
∴OB=AB= ,
∴BD=;
故答案是:7.2cm或cm.
10、=
【解析】
先对进行分母有理化,然后与a比较即可.
【详解】
解:,即a=b,所以答案为=.
本题考查含二次根式的式子大小比较,关键是对进行分母有理化.
11、
相关试卷
这是一份2024年广西昭平县数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
这是一份2024年广西来宾市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)