2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】
展开
这是一份2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为( )
A.10B.13C.8D.11
2、(4分)若x<y,则下列结论不一定成立的是( )
A.B.C.D.
3、(4分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是( )
A.B.
C.D.
4、(4分)在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是( )
A.(3,﹣1)B.(-1,3)C.(-3,1)D.(-2,﹣3)
5、(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米B.1.5米C.2.2米D.2.4米
6、(4分)下列直线与一次函数的图像平行的直线是( )
A.;B.;C.;D..
7、(4分)如图,在中,,垂直平分于点,交于点,则为( )
A.30°B.25°C.20°D.15°
8、(4分)若样本数据3,4,2,6,x的平均数为5,则这个样本的方差是( )
A.3B.5C.8D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若方程(k为常数)有两个不相等的实数根,则k取值范围为 .
10、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.
11、(4分)如图,过正方形的顶点作直线,过作的垂线,垂足分别为.若,,则的长度为 .
12、(4分)如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.
13、(4分)某公司招聘考试分笔试和面试两项,其中笔试按,面试按计算加权平均数作为总成绩.马丁笔试成绩85分,面试成绩90分,那么马丁的总成绩是______分.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知正方形ABCD的边长是2,点E是AB边上一动点(点E与点A、B不重合),过点E作FG⊥DE交BC边于点F、交DA的延长线于点G,且FH∥AB.
(1)当DE=时,求AE的长;
(2)求证:DE=GF;
(3)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数关系式.
15、(8分)(1)化简 :;
(2)先化简,再求值:;其中 a 2 ,b
16、(8分)已知一次函数的图象经过A(-2,-3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)试判断点P(-1,1)是否在这个一次函数的图象上;
(3)求此函数与x轴、y轴围成的三角形的面积.
17、(10分) 解不等式组:,并求出它的整数解的和.
18、(10分)已知y与x-1成正比例,且函数图象经过点(3,-6).
(1)求这个函数的解析式并画出这个函数图象.
(2)已知图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.
20、(4分)若,,则代数式__________.
21、(4分)使得分式值为零的x的值是_________;
22、(4分)菱形的面积是16,一条对角线长为4,则另一条对角线的长为______.
23、(4分)在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)解不等式组
(2)已知A=
①化简A
②当x满足不等式组且x为整数时,求A的值.
(3)化简
25、(10分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.
(1)通过计算说明边长分别为2,3,的是否为直角三角形;
(2)请在所给的网格中画出格点.
26、(12分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.
(1)求直线l2的解析式;
(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.
在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B
考点:勾股定理.
2、C
【解析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
【详解】
解:A,不等式两边同时减3,不等式的方向不变,选项A正确;
B,不等式两边同时乘-5,不等式的方向改变,选项B正确;
C,x<y,没有说明x,y的正负,所以不一定成立,选项C错误;
D,不等式两边同时乘,不等式的方向改变,选项D正确;
故选:C.
本题主要考查了不等式的性质,即不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变;理解不等式的性质是解题的关键.
3、C
【解析】
根据注水的容器可知最底层h上升较慢,中间层加快,最上一层更快,即可判断.
【详解】
∵匀速地向如图的容器内注水,
由注水的容器可知最底层底面积大,h上升较慢,中间层底面积较小,高度h上升加快,最上一层底面积最小,h上升速度最快,故选C.
此题主要考查函数图像的识别,解题的关键是根据题意找到对应的函数图像.
4、B
【解析】
根据点到坐标轴的距离分别求出该点横、纵坐标的绝对值,再根据点在第二象限得出横、纵坐标的具体值即可.
【详解】
解:由点M到x轴的距离是3,到y轴的距离是1,得
|y|=3,|x|=1,
由点M在第二象限,得
x=-1,y=3,
则点M的坐标是(-1,3),
故选:B.
本题考查点到坐标轴的距离和平面直角坐标系中各象限内点的坐标特征. 熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
5、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
6、B
【解析】
【分析】设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.据此可以判断.
【详解】A.直线 与直线相交,故不能选;
B.直线 与直线平行,故能选;
C.直线 与直线重合,故不能选;
D.直线 与直线相交,故不能选.
故选:B
【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数性质.
7、D
【解析】
连接BD,根据线段垂直平分线的性质可以证明△ABD是等腰三角形,在直角△BCD中根据30°角所对的直角边等于斜边的一半求出∠BDC的度数,然后利用三角形的外角的性质即可求解.
【详解】
连接BD,
∵DE垂直平分AB于E,
∴AD=BD=2BC,
∴
∵
∴∠BDC=30°,
又∵BD=DA,
∴.
故选D.
本题考查了线段的垂直平分线的性质以及等腰三角形的性质,正确求得∠BDC的度数是关键.
8、C
【解析】
先由平均数是5计算出x的值,再计算方差.
【详解】
解:∵数据3,4,2,6,x的平均数为5,
∴ ,
解得:x=10,
则方差为×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,
故选:C.
本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,
【详解】
解:∵方程(k为常数)的两个不相等的实数根,
∴>0,且,
解得:k
相关试卷
这是一份2024-2025学年广西河池市天峨县九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年广西河池市天峨县九年级(上)期中数学试卷,共9页。试卷主要包含了选择题;,填空题,解答题等内容,欢迎下载使用。
这是一份广西河池天峨县2023-2024学年数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。