2024年广西贺州昭平县联考数学九上开学经典试题【含答案】
展开
这是一份2024年广西贺州昭平县联考数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是45分
D.该班学生这次考试成绩的平均数是45分
2、(4分)在矩形中,是的中点,,垂足为,则用的代数式表示的长为()
A.B.C.D.
3、(4分)如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是( )
A.1B.2C.3D.4
4、(4分)如图,表示A点的位置,正确的是( )
A.距O点3km的地方
B.在O点的东北方向上
C.在O点东偏北40°的方向
D.在O点北偏东50°方向,距O点3km的地方
5、(4分)若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A.B.C.且D.且
6、(4分)有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )
A.B.C.D.
7、(4分)在下列各式由左到右的变形中,不是因式分解的是( )
A.B.
C.D.
8、(4分)某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表 示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是( )
A.小明在公园休息了5分钟
B.小明乘出租车用了17分
C.小明跑步的速度为180米/分
D.出租车的平均速度是900米/分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平行四边形ABCD中,AD=13,BAD和ADC的角平分线分别交BC于E,F,且EF=6,则平行四边形的周长是____________________
10、(4分)为了了解我县八年级学生的视力情况,从中随机抽取名学生进行视力情况检查,这个问题中的样本容量是___.
11、(4分)如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.
12、(4分)已知关于x的方程的解是负数,则n的取值范围为 .
13、(4分)如图,平行四边形AOBC中,对角线交于点E,双曲线(k>0)经过A,E两点,若平行四边形AOBC的面积为24,则k=____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
15、(8分)计算题
(1)
(2)
16、(8分)某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:
请回答下列问题:
(1)书店有多少种进书方案?
(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)
17、(10分)在边长为1的小正方形组成的正方形网格中,建立如图所示的平面直角坐标系,已知△ABC的三个顶点都在格点上。
(1)请作出△ABC关于x轴对称的△A′B′C′,并分别写出点A′,B′,C′的坐标。
(2)在格点上是否存在一点D,使A,B,C,D四点为顶点的四边形是平行四边形,若存在,直接写出D点的坐标(只需写出一点即可)。
18、(10分)小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,并绘制成如下统计图.
请根据统计图提供的信息,解答下列问题
(1)小丽共调查了 名居民的年龄,扇形统计图中a= %,b= %;
(2)补全条形统计图;
(3)若该辖区0~14岁的居民约有3500人,请估计年龄在60岁以上的居民人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 升.
20、(4分)如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP = 3,PE⊥PB交CD于点E,则PE =____________.
21、(4分)如图, 是 的中位线, 平分 交于 , ,则 的长为________.
22、(4分)化简=_____.
23、(4分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)先化简代数式.求:当时代数式值.
(2)解方程:.
25、(10分)学校组织初二年级学生去参加社会实践活动,学生分别乘坐甲车、乙车,从学校同时出发,沿同一路线前往目的地.在行驶过程中,甲车先匀速行驶1小时后,提高速度继续匀速行驶,当甲车超过乙车40千米后停下来等候乙车,两车相遇后,甲车和乙车一起按乙车原来的速度匀速行驶到达目的地.如图是甲、乙两车行驶的全过程中经过的路程y(千米)与出发的时间x(小时)之间函数关系图象.根据图中提供的信息,解答下列问题:
(1)甲车行驶的路程为______千米;
(2)乙车行驶的速度为______千米/时,甲车等候乙车的时间为______小时;
(3)甲、乙两车出发________小时,第一次相遇;
(4)甲、乙两车出发________小时,相距20千米.
26、(12分)感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.
探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF
应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:该班人数为:2+5+6+6+8+7+6=40,
得45分的人数最多,众数为45,
第20和21名同学的成绩的平均值为中位数,中位数为:=45,
平均数为: =44.1.
故错误的为D.
故选D.
2、B
【解析】
如图连接DH,根据面积和相等列方程求解.
【详解】
解:如图所示连接DH,AB=m,BC=4,BH=2,
则矩形面积=4m, AH=,
则矩形ABCD=三角形ABH+三角形AHD+三角形DHC,
则4m=m+DE×+m,
解得DE=.
本题考查勾股定理和矩形性质,能够做出辅助线是解题关键.
3、D
【解析】
分析:利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理;利用圆的面积公式表示出S1、S2、S3,然后根据勾股定理即可解答;在勾股定理的基础上结合等腰直角三角形的面积公式,运用等式的性质即可得出结论;分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.
详解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2.
第一幅图:∵S3=c2,S1=a2,S2=b2
∴S1+S2= (a2+b2)=c2=S3;
第二幅图:由圆的面积计算公式知:S3=,S2=,S1=,
则S1+S2=+== S3;
第三幅图:由等腰直角三角形的性质可得:S3=c2,S2=b2,S1=a2,
则S3+S2=(a2+b2)=c2=S1.
第四幅图:因为三个四边形都是正方形则:
∴S3=BC2=c2,S2= AC2=b2,,S1=AB2=a2,
∴S3+S2=a2+b2=c2=S1.
故选:D.
点睛:此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式.
4、D
【解析】
用方向角和距离表示位置.
【详解】
如图,可用方向角和距离表示:A在O点北偏东50°方向,距O点3km的地方.
故选D
本题考核知识点:用方向角和距离表示位置.解题关键点:理解用方向角和距离表示位置的方法.
5、D
【解析】
根据一元二次方程有两个不相等的实数根,可得 进而计算k的范围即可.
【详解】
解:根据一元二次方程有两个不相等的实数根
可得
计算可得
又根据要使方程为一元二次方程,则必须
所以可得:且
故选D.
本题主要考查根与系数的关系,根据一元二次方程有两个不相等的实根可得, ;有两个相等的实根则 ,在实数范围内无根,则 .
6、C
【解析】
试题分析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为.
考点:概率的计算
7、B
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是因式分解,故A不符合题意;
B、是整式的乘法,故B符合题意;
C、是因式分解,故C不符合题意;
D、是因式分解,故D不符合题意;
故选:B.
本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.
8、B
【解析】
试题解析:A、在公园停留的时间为15-10=5分钟,也就是在公园休息了5分钟,此选项正确,不合题意;
B、小明乘出租车的时间是17-15=2分钟,此选项错误,符合题意;
C、小明1800米用了10分钟,跑步的速度为180米/分,此选项正确,不合题意;
D、出租车1800米用了2分钟,速度为900米/分,此选项正确,不合题意.
故选B.
考点:函数的图象.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、41或33.
【解析】
需要分两种情况进行讨论.由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则BE=AB;同理可得,CF=CD=1.而AB+CD=BE+CF=BC+FE=13+6=19,或 AB+CD=BE+CF=BC-FE=13-6=7由此可以求周长.
【详解】
解:分两种情况,(1)如图,当AE、DF相交时:
∵AE平分∠BAD,
∴∠1=∠2
∵平行四边形ABCD中,AD∥BC,BC=AD=13,EF=6
∴∠1=∠3
∴∠2=∠3
∴AB=BE
同理CD=CF
∴AB+CD=BE+CF=BC+FE=13+6=19
∴平行四边形ABCD的周长= AB+CD+ BC+AD=19+13×2=41;
(二)当AE、DF不相交时:
由角平分线和平行线,同(1)方法可得AB=BE,CD=CF
∴AB+CD=BE+CF=BC-FE=13-6=7
∴平行四边形ABCD的周长= AB+CD+ BC+AD=7+13×2=33;
故答案为:41或33.
本题考查角平分线的定义、平行四边形的性质、平行线的性质等知识,解题关键“角平分线+一组平行线=等腰三角形”.
10、
【解析】
根据样本容量则是指样本中个体的数目,可得答案.
【详解】
为了了解我县八年级学生的视力情况,从中随机抽取1200名学生进行视力情况检查,在这个问题中,样本容量是1200,
故答案为:1200.
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
11、
【解析】
连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.
【详解】
解:如图,连接OB,过点O作OD⊥AB于D,
∵在的垂直平分线上,
∴OB=OC,
∵,,,
∴OA2+OB2=32+42=25=AB2,
∴△ABC为直角三角形,
∵S△ABO=AO·OB=AB·OD,
∴OD= =.
故答案为.
此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.
12、n<1且
【解析】
分析:解方程得:x=n﹣1,
∵关于x的方程的解是负数,∴n﹣1<0,解得:n<1.
又∵原方程有意义的条件为:,∴,即.
∴n的取值范围为n<1且.
13、1
【解析】
解:设A(x,),B(a,0),过A作AD⊥OB于D,EF⊥OB于F,如图,
由平行四边形的性质可知AE=EB,
∴EF为△ABD的中位线,
由三角形的中位线定理得:EF=AD=,DF=(a-x),OF=,
∴E(,),
∵E在双曲线上,
∴=k,
∴a=3x,
∵平行四边形的面积是24,
∴a•=3x•=3k=24,解得:k=1.
故答案为:1.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析,(2)证明见解析
【解析】
(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.
(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.
【详解】
证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.
又∵E、F分别是边AB、CD的中点,∴BE=DF.
∵在△BEC和△DFA中,,
∴△BEC≌△DFA(SAS).
(2)由(1)△BEC≌△DFA,
∴CE=AF,
∵E、F分别是边AB、CD的中点,
∴AE=CF
∴四边形AECF是平行四边形.
本题考查三角形全等的证明,矩形的性质和平行四边形的判定.
15、(1)(2)12
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算.
【详解】
(1)原式=
=;
(2)原式=6-12+12-(20-2)
=-12.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、(1)4种,甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1(2)甲47,乙53利润最大,最大利润1106元
【解析】
(1)利用购书款不高于1118元,预计这100本图书全部售完的利润不低于1100元,结合表格中数据得出不等式组,求出即可;
(2)设利润为W,根据题意得W=10x+12(100-x)=-2x+1200,W随x的增大而减小,故购进甲种书:47种,乙种书:53本利润最大,代入求出即可;
【详解】
解:(1)设购进甲种图书x本,则购进乙书(100-x)本,根据题意得出:
解得:47≤x≤1.
故有4种购书方案:甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1;
(2)设利润为W,根据题意得
W=10x+12(100-x)=-2x+1200,
根据一次函数的性质得,W随x的增大而减小,
故购进甲种书:47本,乙种书:53本,利润最大,
最大利润W=-2×47+1200=1106,
所以甲47,乙53利润最大,最大利润1106元.
故答案为:(1)4种,甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1(2)甲47,乙53利润最大,最大利润1106元
本题考查不等式组的应用以及一次函数的性质以及最佳方案问题,正确得出不等式关系是解题关键.
17、(1)A(-3,-4),B'(-1,-1);(2)D1(4,0),D2(-6,2),D3(0,6)
【解析】
(1)分别作A、B、C关于x轴对称的点A‘、B’、C‘,然后顺次把这三点连接起来即可;由图直接读出A’、B‘、C’的坐标即可;
(2)分别以BC、AB、AC为对角线作平行四边形,得到D1、D2、D3 , 由图读出D1、D2、D3坐标即可.
【详解】
(1)解:如图所示,△A'B′C′即为所求,A(-3,-4),B'(-1,-1),C(2,-3)
(2)解:如图所示,D1(4,0),D2(-6,2),D3(0,6)(只需写出一点即可)
此题主要考查图形与坐标,解题的关键是熟知平行四边形的性质.
18、(1)500,20%,12%;(2)110,图见解析;(3)2100人
【解析】
(1)由题意根据“15~40”的百分比和频数可求总数,进而求出a、b的值;
(2)根据题意利用总数和百分比求出频数再补全条形图即可;
(3)根据题意用样本估计总体,进而得出年龄在60岁以上的居民人数即可.
【详解】
解:(1)解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,
0~14岁有100人,60岁以上有60人,所以.
故答案为:500,20%,12%.
(2)由题意可得41-59岁有:22%500=110(人),画图如下,
(3)由题意估计出总人数:(人),
年龄在60岁以上的居民人数:(人).
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
解:由图象可得出:行驶160km,耗油(35﹣25)=10(升),
∴行驶240km,耗油×10=15(升),
∴到达乙地时邮箱剩余油量是35﹣15=1(升).
故答案为1.
20、
【解析】
连接BE,设CE的长为x
∵AC为正方形ABCD的对角线,正方形边长为4,CP=3
∴∠BAP=∠PCE=45°,AP=4-3=
∴BP2=AB2+AP2-2AB×AP×cs∠BAP=42+()2-2×4××=10
PE2=CE2+CP2-2CE×CP×cs∠PCE=(3)2+x2-2x×3×=x2-6x+18
BE2=BC2+CE2=16+x2 在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
∴PE2=22-6×2+18=10 ∴PE=.
21、1
【解析】
EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.
【详解】
解:∵EF是△ABC的中位线
∴EF∥BC,∠EDB=∠DBC
又∵BD平分∠ABC
∴∠EBD=∠DBC=∠EDB
∴EB=ED=1.
故答案为1.
本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.
22、
【解析】
,
故答案为
考点:分母有理化
23、
【解析】
画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.
【详解】
画树状图分析如下:
共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,
∴李欣和张帆恰好选择同一线路游览的概率为.
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
二、解答题(本大题共3个小题,共30分)
24、(1)2;(2).
【解析】
(1)把括号内通分化简,再把除法转化为乘法约分,然后把代入计算即可;
(2)两边都乘以x-2,化为整式方程求解,求出x的值后检验.
【详解】
(1)原式=
=
=
=
=,
当 时,
原式=;
(2),
两边都乘以x-2,得
3=2(x-2)-x,
解之得
x=7,
检验:当x=7时,x-2≠0,所以x=7是原方程的解.
本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.
25、560 80 0.5 2 1, 3,4.25.
【解析】
(1)根据函数图象中的数据可以写出甲行驶的路程;
(2)根据函数图象中的数据可以求得乙车行驶的速度和甲等候乙车的时间;
(3)根据函数图象中的数据可以计算出甲、乙两车第一次相遇的时间;
(4)根据题意可以计算出两车相距20千米时行驶的时间.
【详解】
(1)由图象可得,
甲行驶的路程为560千米,
故答案为: 560;
(2) 乙车行驶的速度为:5607=80千米/时, 甲车等候乙车的时间为:4080=0.5小时,
故答案为:80,0.5;
(3) a=32080=4, c=320+40=360,
当时,甲车的速度是: (360-60) (4-1) =100千米/时,
设甲、乙两车c小时时,两车第一次相遇,80c=60+100 (c-1),
解得,c=2,
故答案为:2;
(4) 当甲、乙两车行驶t小时时,相距20千米,
当时,80t-60t=20,得t=1,
当时,,解得t=1(舍去),t=3,
当时,360-80t=20,解得t=4.25,
综上,当甲、乙两车行驶1小时、3小时或4.25小时,两车相距20千米,
故答案为:1,3,4.25.
此题考查一次函数的应用,正确理解函数图象的意义,根据图象提供的信息正确计算是解题的关键.
26、探究:证明见详解;应用:
【解析】
探究:根据正方形的性质得到AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.求得∠ACB=∠ACD=45°,根据全等三角形的性质得到ED=EB,∠EDC=∠EBC,求得∠EFB=∠EDC,根据等腰三角形的判定定理即可得到结论;
应用:连接DF,求得△DEF是等腰直角三角形,根据勾股定理得到CF=,由三角形的面积公式即可得到结论.
【详解】
解:探究:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠ADC=∠BCD=90°.
∴∠ACB=∠ACD=45°,
又∵EC=EC,
∴△EDC≌△EBC(SAS),
∴ED=EB,∠EDC=∠EBC,
∵EF⊥ED,
∴∠DEF=90°,
∴∠EFC+∠EDC=180°
又∵∠EBC+∠EBF=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF;
应用:连接DF,
∵EF=DE,∠DEF=90°,
∴△DEF是等腰直角三角形,
∵DE=2,
∴EF=2,DF= ,
∵∠DCB=90°,CD=1,
∴CF=,
∴四边形EFCD的面积=S△DEF+S△CDF= .
故答案为:.
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的识别图形是解题的关键.
题号
一
二
三
四
五
总分
得分
成绩(分)
35
39
42
44
45
48
50
人数(人)
2
5
6
6
8
7
6
甲种图书
乙种图书
进价(元/本)
8
14
售价(元/本)
18
26
相关试卷
这是一份2024年广西昭平县数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
这是一份2024年广西昭平县九上数学开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西省贺州市名校九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。