2024年广西南宁市天桃实验学校九年级数学第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为,第②个图形的面积为,第③个图形的面积为,…,那么第⑥个图形面积为( )
A.B.C.D.
2、(4分)在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积,当高h为定值时,下列说法正确的是( )
A.S,a是变量;,h是常量
B.S,a,h是变量;是常量
C.a,h是变量;S是常量
D.S是变量;,a,h是常量
3、(4分)一个等腰三角形的两边长分别是3和7,则它的周长为( )
A.17B.15C.13D.13或17
4、(4分)已知点的坐标为,则点在第( )象限
A.一B.二C.三D.四
5、(4分)已知甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是30岁,这三个团游客年龄的方差分别是=1.4,=11.1.=25,导游小芳喜欢带游客年龄相近的团队,若要在这三个团中选择一个,则她应选( )
A.甲B.乙C.丙D.都可以
6、(4分)分别顺次连接①平行四边形②矩形③菱形④对角线相等的四边形,各边中点所构成的四边形中,为菱形的是( )
A.②④B.①②③C.②D.①④
7、(4分)如图,图(1)、图(2)、图(3),图(4)分别由若干个点组成,照此规律,若图(n)中共有129个点,则( )
A.8B.9C.10D.11
8、(4分)小勇投标训练4次的成绩分别是(单位:环)9,9,x,1.已知这组数据的众数和平均数相等,则这组数据中x是( )
A.7 B.1 C.9 D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 .
10、(4分)如图,在梯形中, ,对角线,且,则梯形的中位线的长为_________.
11、(4分)如图,菱形ABCD的周长是40 cm,对角线AC为10 cm,则菱形相邻两内角的度数分别为_______.
12、(4分)若一次函数的图象不经过第二象限,则的取值范围为_________0.
13、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算: (1); (2).
15、(8分)某校为了解全校学生上学期参加“生涯规划”社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
参加社区活动次数的频数、频率
根据以上图表信息,解答下列问题:
(1)表中a= , b= , m= , n= .
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
16、(8分)已知正比例函数与反比例函数.
(1)证明:直线与双曲线没有交点;
(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;
(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时
17、(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
18、(10分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
20、(4分)某鞋店试销一种新款女鞋,销售情况如下表所示:
鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( )
A.平均数 B.众数 C.中位数 D.方差
21、(4分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.
22、(4分)在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是_____.
23、(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,每个小正方形的边长均为1,求证:△ABC是直角三角形.
25、(10分)(1)计算
(2)解不等式组,并写出不等式组的非负整数解。
(3)解分式方程:
26、(12分)如图,点在等边三角形的边,延长至,使,连接交于.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
观察图形,小正方形的个数是相应序数乘以下一个数,每一个小正方形的面积是1,然后求解即可.
【详解】
解:∵第①个图形的面积为1×2×1=2,
第②个图形的面积为2×3×1=6,
第③个图形的面积为3×4×1=12,
…,
∴第⑥个图形的面积为6×7×1=42,
故选:C.
本题考查了图形的变化类问题,解题的关键是仔细观察图形,并找到图形的变化规律.
2、A
【解析】
因为高h为定值,所以h是不变的量,即h是常量,所以S,a是变量,,h是常量.
故选A.
3、A
【解析】
试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.
考点:等腰三角形的性质
4、B
【解析】
应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点的坐标为
∴点在第二象限
故选:B
本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、A
【解析】
分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
详解:∵S甲2=1.4,S乙2=11.1,S丙2=25,
∴S甲2<S乙2<S丙2,
∴游客年龄最相近的团队是甲.
故选A.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、A
【解析】
根据菱形的判定,有一组邻边相等的平行四边形是菱形,只要保证四边形的对角线相等即可.
【详解】
∵连接任意四边形的四边中点都是平行四边形,
∴对角线相等的四边形有:②④,
故选:A.
本题主要利用菱形的四条边都相等及连接任意四边形的四边中点都是平行四边形来解决.
7、C
【解析】
仔细观察图形,找到图形的变化规律,利用规律求解.
【详解】
解:图(1)有1×2+2×1−1=3个点;
图(2)有2×3+2×2−1=9个点;
图(3)有3×4+2×3−1=17个点;
图(4)有4×5+2×4−1=27个点;
…
∴图(n)有n×(n+1)+2×n−1=n2+3n−1个点;
令n2+3n−1=129,
解得:n=10或n=−13(舍去)
故选:C.
本题考查了图形的变化类问题,是一道找规律的题目,这类题型在中考中经常出现,解题的关键是能够找到图形变化的规律,难度不大.
8、C
【解析】【分析】根据题意可知,x是9,不可能是1.
【详解】因为这组数据的众数和平均数相等,则这组数据中x是9.
故选:C
【点睛】本题考核知识点:众数和平均数.解题关键点:理解众数和平均数的定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或2或4
【解析】
如图1:
当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;
如图2:
当∠C=10°时,∠ABC=30°,
∵∠ABP=30°,
∴∠CBP=10°,
∴△PBC是等边三角形,
∴CP=BC=1;
如图3:
当∠ABC=10°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=10°﹣30°=30°,
∴PC=PB,
∵BC=1,
∴AB=3,
∴PC=PB===2
如图4:
当∠ABC=10°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=10°+30°=90°,
∴PC=BC÷cs30°=4.
故答案为1或2或4.
考点:解直角三角形
10、1
【解析】
解:过C作CE∥BD交AB的延长线于E,
∵AB∥CD,CE∥BD,
∴四边形DBEC是平行四边形,
∴CE=BD,BE=CD
∵等腰梯形ABCD中,AC=BD∴CE=AC
∵AC⊥BD,CE∥BD,
∴CE⊥AC
∴△ACE是等腰直角三角形,
∵AC=,
∴AE =AC=10,
∴AB+CD =AB+BE=10,
∴梯形的中位线=AE=1,
故答案为:1.
本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.
11、60°,120°
【解析】
首先证明△ABD是等边三角形,则∠D=60°,然后利用菱形的性质求解.
【详解】
∵菱形ABCD的边长AD=CD==10cm,
又∵AC=10cm,
∴AD=CD=AC,
∴△ACD=60°,
∴∠D =60°,∠DAB=120°,
故答案为60°,120°
本题考查了菱形的性质,正确证明△ABC是等边三角形是关键.
12、
【解析】
根据题意可知,图象经过一三象限或一三四象限,可得b=1或b<1.
【详解】
解:一次函数y=2x+b的图象不经过第二象限,
则可能是经过一三象限或一三四象限,
经过一三象限时,b=1;
经过一三四象限时,b<1.
故b≤1.
故答案是:≤.
此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
13、
【解析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.
【详解】
解:四边形ABCD是矩形,
∴∠A=90°, AB=6,AD=BC=8,
∴BD= =10,
又∵EF是BD的垂直平分线,
∴OB=OD=5,∠BOF=90°,
又∵∠C=90°,
∴△BOF∽△BCD,
∴ ,即:,解得:BF=
本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)6;(2)
【解析】
分析:(1)根据二次根式的乘法进行计算即可;(2)首先化简各式进而合并同类项求出即可.
详解:(1)(1)原式;
(2)(π+1)0-+||=1-2+ =1-;
点睛:本题考查了二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.
15、(1)12,4,0.08, 0.04;(2)补图见解析.
【解析】
分析:(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b、n的值;
(2)利用(1)中所求补全条形统计图即可.
详解:(1)由题意可得:10÷0.2=50,a=50×0.24=12(人).
∵m=50-10-12-16-6-2=4,
∴b==0.08,,解得:n=0.04;
故答案为:12,4,0.08, 0.04 ;
(2)如图所示:
.
点睛:本题主要考查了频数分布直方图,正确将条形统计图和表格中数据相联系是解题的关键.
16、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时, 当时, ;(3)当或时满足.
【解析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;
(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;
(3)取时,作出函数图象,观察图象可得到结论.
【详解】
(1)证明:将和这两函数看成两个不定方程,联立方程组得:
两边同时乘得,
整理后得
利用计算验证得:
∵ 所以
方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)
(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.
联立方程组得:
两边同时乘得,整理后得
因为直线与双曲线有且只有一个交点,
∴方程有且只有一个解,即:,
将方程对应的值代入判别式得:
解得
综上所述:当时,,
当时, ,
(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:
计算可得交点坐标,
要使,即函数的图象在函数图象的上方即可,
由图可知,当或时函数的图象在函数,
图象的上方,即当或时满足
本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.
17、(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.
【解析】
(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分别为边AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,
∴DF∥AE,DF=AE,
∴四边形AEFD是平行四边形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四边形BFDE是平行四边形,
∴四边形BFDE是菱形.
1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定
18、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
【解析】
(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
(2)5月份盈利=4月份盈利×增长率.
【详解】
(1)设该商店的每月盈利的平均增长率为x,根据题意得:
3000(1+x)2=4320,
解得:x1=20%,x2=-2.2(舍去).
(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
4320×(1+20%)=5184(元).
答:(1)该商店的每月盈利的平均增长率为20%.
(2)5月份盈利为5184元.
此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙.
【解析】
根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.
【详解】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案是:乙.
考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20、B
【解析】
根据题意可得:鞋店经理最关心的是,哪种型号的鞋销量最大,即各型号的鞋的众数.
【详解】
鞋店经理最关心的是,哪种型号的鞋销量最大,而众数是数据中出现次数最多的数,故鞋店经理关心的是这组数据的众数.
故选:B.
21、﹣2≤m≤1
【解析】
由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.
【详解】
解:∵点A、B的坐标分别为(3,m)、(3,m+2),
∴线段AB∥y轴,
当直线y=1经过点A时,则m=1,
当直线y=1经过点B时,m+2=1,则m=﹣2;
∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
故答案为﹣2≤m≤1.
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
22、
【解析】
从特殊得到一般探究规律后,利用规律解决问题即可;
【详解】
∵直线l:y=x﹣与x轴交于点B1,
∴B1(1,0),OB1=1,△OA1B1的边长为1,
∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22,
由此可得,△AnBn+1An+1的边长是2n,
∴△A2017B2018A2018的边长是1.
故答案为1.
本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.
23、
【解析】
由C′D∥BC,可得比例式,设AB=a,构造方程即可.
【详解】
设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,
∵C′D∥BC,
∴,即,
解得a=−1− (舍去)或−1+.
所以AB长为.
故答案为.
本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.
二、解答题(本大题共3个小题,共30分)
24、答案见详解.
【解析】
根据勾股定理计算出、、,再根据勾股定理逆定理可得是直角三角形.
【详解】
证明:,,,
,
是直角三角形.
此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长,,满足,那么这个三角形就是直角三角形.
25、①+2;②0、1;③原方程无解.
【解析】
(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解. .
【详解】
解(1)原式=3-1-(1-)+-1
=3-1-1++2-1
=+2
(2)
解不等式①得,x≤1,
解不等式②得,x<4,
所以不等式组的解集是x≤1,
所以不等式组的非负整数解是0、1.
故答案为:0、1.
(3)方程两边同乘(x+2)(x-2),
得:(x-2)2=(x+2)2+16,
整理解得x=-2.
经检验x=-2是增根,
故原方程无解.
(1)本题考查实数的混合运算、解不等式组和解分式方程;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时要注意符号的变化.
26、证明见解析.
【解析】
作DG//AC,交AB于G,利用等边三角形的性质得出△BDG为等边三角形,再利用ASA得出△DFG≌△EAF,即可解答
【详解】
证明:作DG//AC,交AB于G,
∵等边三角形ABC
∴∠BDG=∠C=60°
∴∠BGD=∠BAC=60°
所以△BDG为等边三角形
∴GD=BD=AE
∵∠GDF=∠E,∠DGF=∠EAF
∴△DFG≌△EAF
∴FD=EF.
此题考查等边三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线
题号
一
二
三
四
五
总分
得分
活动次数x
频数
频率
0<x≤3
10
0.20
3<x≤6
a
0.24
6<x≤9
16
0.32
9<x≤12
6
0.12
12<x≤15
b
m
15<x≤18
2
n
型号
22
22.5
23
23.5
24
24.5
25
数量(双)
3
5
10
15
8
3
2
2024-2025学年广西壮族自治区南宁市天桃实验学校九上数学开学预测试题【含答案】: 这是一份2024-2025学年广西壮族自治区南宁市天桃实验学校九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广西壮族自治区南宁市天桃实验学校数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年广西壮族自治区南宁市天桃实验学校数学九年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况为等内容,欢迎下载使用。
2023-2024学年广西南宁市天桃实验学校数学九上期末统考模拟试题含答案: 这是一份2023-2024学年广西南宁市天桃实验学校数学九上期末统考模拟试题含答案,共8页。试卷主要包含了若不等式组无解,则的取值范围为,定义,方程x2-x-1=0的根是等内容,欢迎下载使用。