


2024年广西兴业县九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份2024年广西兴业县九年级数学第一学期开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的方程的解为正数,则m的取值范围是
A.m6C.m6且m≠8
2、(4分)在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于( )
A.B.C.D.
3、(4分)正方形具有而矩形不一定具有的性质是 ( )
A.对角线互相垂直B.对角线互相平分
C.对角线相等D.四个角都是直角
4、(4分)点关于x轴对称的点的坐标是
A.B.C.D.
5、(4分)下列方程中,有实数解的方程是( )
A.;B.;
C.;D.
6、(4分)如图,是我国古代数学家在为《周髀算经》作注解时给出的“弦图”,给出“弦图”的这位数学家是( )
A.毕达哥拉斯B.祖冲之C.华罗庚D.赵爽
7、(4分)小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ).
A.80 B.50 C.1.6 D.0.625
8、(4分)下列长度的三条线段能组成三角形的是( )
A.1,2,3B.2,2,4C.3,4,5D.3,4,8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式______.
10、(4分)若x是的整数部分,则的值是 .
11、(4分)若三角形三边分别为6,8,10,那么它最长边上的中线长是_____.
12、(4分)赵爽(约公元182~250年),我国历史上著名的数学家与天文学家,他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之为弦实.开方除之,即弦.”又给出了新的证明方法“赵爽弦图”,巧妙地利用平面解析几何面积法证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如果小正方形的面积为1,直角三角形较长直角边长为4,则大正方形的面积为_____________________.
13、(4分)如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为1,L2、L3的距离为2,则正方形的边长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)当参加老师的人数为多少时,两家旅行社收费相同?
(2)求出y1、y2关于x的函数关系式?
(3)如果共有50人参加时,选择哪家旅行社合算?
15、(8分)如图,已知△ABC中,DE∥BC,S△ADE︰S四边形BCED=1︰2,,试求DE的长.
16、(8分)解下列方程
(1)
(2)
17、(10分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B 的“确定正方形”的示意图.
(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;
(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.
(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.
18、(10分)如图,在平面直角坐标系中,直线与轴、轴分别交于,两点.
(1)反比例函数的图象与直线交于第一象限内的,两点,当时,求的值;
(2)设线段的中点为,过作轴的垂线,垂足为点,交反比例函数的图象于点,连接,,当以,,为顶点的三角形与以,,为顶点的三角形相似时,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为 .
20、(4分)若关于x的方程无解,则m= .
21、(4分)已知反比例函数y=(k≠0)的图象在第二、四象限,则k的值可以是:____(写出一个满足条件的k的值).
22、(4分)已知点,,直线与线段有交点,则的取值范围是______.
23、(4分)分解因式:9x2y﹣6xy+y=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
求证:,.
25、(10分)为提高市民的精神生活美化城市环境,城市管理局从外地新进一批绿化树苗,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费500元,另外每公里再加收5元;
方式二:使用铁路运输公司的火车运输,装卸收费900元,另外每公里再加收3元.
(1)请分别写出邮车、火车运输的总费用为(元)、(元)与运输路程(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
26、(12分)2019 年 7 月 1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、 “有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:
信息 1:一个垃圾分类桶的售价比进价高 12 元;
信息 2:卖 3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;
请根据以上信息,解答下列问题:
(1)该商品的进价和售价各多少元?
(2)商店平均每天卖出垃圾分类桶 16 个.经调查发现,若销售单价每降低 1 元,每天可多售出 2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
原方程化为整式方程得:2﹣x﹣m=2(x﹣2),
解得:x=2﹣,
∵原方程的解为正数,
∴2﹣>0,
解得m<6,
又∵x﹣2≠0,
∴2﹣≠2,即m≠0.
故选C.
本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.
2、C
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD= AB.
【详解】
解:∵∠ACB=90°,D为AB的中点,
∴CD= AB= ×6=3cm.
故选:C.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
3、A
【解析】
试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.
考点:(1)、正方形的性质;(2)、矩形的性质
4、A
【解析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行求解即可得.
【详解】
由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是,
故选A.
本题考查了关于x轴对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
5、B
【解析】
首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.
【详解】
解:A项移项得:,等式不成立,所以原方程没有实数解,故本选项错误;
B项移项得,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;
C项是一元二次方程,△==-15<0,方程无实数根,故本选项错误;
D. 化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;
故选B.
本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.
6、D
【解析】
我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.
【详解】
解:我国三国时期数学家赵爽在为《周髀算经》作注解时创造了一幅“弦图”,后人称其为“赵爽弦图”, “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.
故答案是:D.
本题考查了学生对我国数学史的了解,籍此培养学生的爱国情怀和民族自豪感,增强学习数学的兴趣.
7、D
【解析】
试题分析:频率等于频数除以数据总和,∵小明共投篮81次,进了51个球,∴小明进球的频率=51÷81=1.625,故选D.
考点:频数与频率.
8、C
【解析】
A、1+2=3,不能构成三角形,故A错误;
B、2+2=4,不能构成三角形,故B错误;
C、3+4>5,能构成三角形,故C正确;
D、3+4<8,不能构成三角形,故D错误.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (2b+a)(2b-a)
【解析】
运用平方差公式进行因式分解:a2-b2=(a+b)(a-b).
【详解】
(2b+a)(2b-a).
故答案为:(2b+a)(2b-a)
本题考核知识点:因式分解.解题关键点:熟记平方差公式.
10、1
【解析】
3
相关试卷
这是一份2024年广西兴业县联考数学九年级第一学期开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西岳池县联考数学九年级第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广西兴业县九年级数学第一学期期末监测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
