2024年广西壮族自治区河池市南丹县九上数学开学质量跟踪监视试题【含答案】
展开
这是一份2024年广西壮族自治区河池市南丹县九上数学开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图像经过( )
A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限
2、(4分)下列各图中,∠1>∠2的是( )
A.B.C.D.
3、(4分)已知,则的值为( )
A.B.-2C.D.2
4、(4分)样本方差的计算公式中,数字30和20分别表示样本的( )
A.众数、中位数B.方差、标准差C.数据的个数、中位数D.数据的个数、平均数
5、(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是( )
A.y1=y2B.y1<y2C.y1>y2D.不能确定
6、(4分)在下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A.B.C..D.
7、(4分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )
A.7cmB.10cmC.12cmD.22cm
8、(4分)菱形ABCD的对角线AC,BD相交于点O,若AC=6,菱形的周长为20,则对角线BD的长为( )
A.4B.8C.10D.12
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC =,那么正方形ABCD的面积是__________.
10、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.
11、(4分)若<0,则代数式可化简为_____.
12、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
13、(4分)在梯形ABCD中,AD∥BC,如果AD=4,BC=10,E、F分别是边AB、CD的中点,那么EF=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在等腰中,,点在线段上运动(不与重合),连结,作,交线段于点.
(1)当时,= °;点从点向点运动时,逐渐变 (填“大”或“小”);
(2)当等于多少时,,请说明理由;
(3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.
15、(8分)如图,一次函数的图象与反比例函数的图象交于第二、四象限的、两点,与、轴分别交于、两点,过点作轴于点,连接,且的面积为3,作点关于轴对称点.
(1)求一次函数和反比例函数的解析式;
(2)连接、,求的面积.
16、(8分)某单位计划在暑假阴间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七折优惠;乙旅行社表示可先免去一位游客的费用,其余游客七五折优惠.设该单位参加旅游的人数是x人.选择甲旅行社时,所需费用为元,选择乙旅行社时,所需费用为元.
(1)写出甲旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(2)写出乙旅行社收费(元)与参加旅游的人数x(人)之间的关系式.
(3)该单位选择哪一家旅行社支付的旅游费用较少?
17、(10分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.
(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?
18、(10分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.
(1)线段AB的长是______;
(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)多项式与多项式的公因式分别是______.
20、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.
21、(4分)求值:=____.
22、(4分)要使分式有意义,x需满足的条件是 .
23、(4分)如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简÷,然后从1、2、3中选取一个你认为合适的数作为a的值代入求值.
25、(10分)解一元二次方程.
(1) (2)
26、(12分)某校举办的八年级学生数学素养大赛共设个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):
若七巧板拼图,趣题巧解,数学应用三项得分分别按折算计入总分,最终谁能获胜?
若七巧板拼图按折算,小麦 (填“可能”或“不可能”)获胜.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据一次函数的性质k<0,则可判断出函数图象y随x的增大而减小,再根据b>0,则函数图象一定与y轴正半轴相交,即可得到答案.
【详解】
解:∵一次函数y=-2x+3中,k=-2<0,则函数图象y随x的增大而减小,
b=3>0,则函数图象一定与y轴正半轴相交,
∴一次函数y=-2x+3的图象经过第一、二、四象限.
故选:D.
本题考查了一次函数的图象,一次函数y=kx+b的图象经过的象限由k、b的值共同决定,分如下四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.
2、D
【解析】
根据等边对等角,对顶角相等,平行线的性质,三角形的一个外角大于任何一个与它不相邻的内角对各选项分析判断后利用排除法求解.
【详解】
解:A、∵AB=AC,∴∠1=∠2,故本选项错误;
B、∠1=∠2(对顶角相等),故本选项错误;
C、根据对顶角相等,∠1=∠3,∵a∥b,∴∠2=∠3,∴∠1=∠2,故本选项错误;
D、根据三角形的外角性质,∠1>∠2,故本选项正确.
故选D.
3、C
【解析】
首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.
【详解】
∵,
∴x−3<0,x−2<0,
∴=3−x+(2−x)=5−2x.
故选:C.
本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.
4、D
【解析】
【分析】方差公式中,n、 分别表示数据的个数、平均数.
【详解】样本方差的计算公式中,数字30和20分别表示样本的数据的个数、平均数.
故选:D
【点睛】本题考核知识点:方差.解题关键点:理解方差公式的意义.
5、C
【解析】
根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,由-3<1,结合一次函数y=-x-1在定义域内是单调递减函数,判断出y1,y1的大小关系即可.
【详解】
∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,
∴y1>y1.
故选C.
此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.
6、B
【解析】
试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:
A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、不是轴对称图形,也不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.
考点:轴对称图形和中心对称图形
7、C
【解析】
根据折叠可得:AD=BD,
∵△ADC的周长为17cm,AC=5cm,
∴AD+DC=17﹣5=12(cm).
∵AD=BD,
∴BD+CD=12cm.
故选C.
8、B
【解析】
利用菱形的性质根据勾股定理求得BO的长,然后求得BD的长即可.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,
∵AC=6,
∴AO=3,
∵周长为20,
∴AB=5,
由勾股定理得:BO=4,
∴BD=8,
故选:B.
本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.
【详解】
正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,
∵AC=
∴正方形ABCD的面积两个直角三角形的面积和,
∴正方形ABCD的面积=,
故答案为:1.
此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.
10、
【解析】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.
【详解】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图
按顺时针方向旋转得到
在中,
将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处)
,
,即
在和中
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.
11、
【解析】
二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.
【详解】
若ab<1,且代数式有意义;
故有b>1,a<1;
则代数式=|a|=-a.
故答案为:-a.
本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.
12、.
【解析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
∴B坐在2号座位的概率是.
13、1.
【解析】
根据梯形中位线定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的长.
【详解】
∵E,F分别是边AB,CD的中点,
∴EF为梯形ABCD的中位线,
∴EF=(AD+BC)=(4+10)=1.
故答案为1.
本题考查了梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)35°,小;(2)当DC=3时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
【解析】
(1)根据三角形内角和定理得到∠BAD=35°,点从点向点运动时,∠BAD变大,三角形内角和定理即可得到答案;
(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,得到∠ADB=∠DEC,根据AB=DC=2,证明△ABD≌△DCE;
(3)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.
【详解】
解:(1)∵∠B=40°,∠ADB=105°,
∴∠BAD=180°-∠B-∠ADB=180°-105°-40°=35°,
∵点从点向点运动时,∠BAD变大,且∠BDA=180°-40°-∠BAD
∴逐渐变小
(2)当DC=3时,△ABD≌△DCE,
理由:∵AB=AC,
∴∠C=∠B=40°,
∴∠DEC+∠EDC=140°,
又∵∠ADE=40°,
∴∠ADB+∠EDC=140°,
∴∠ADB=∠DEC,
又∵AB=DC=3,
在△ABD和△DCE中,
∴△ABD≌△DCE(AAS);
(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,
当DA=DE时,∠DAE=∠DEA=70°,
∴∠BDA=∠DAE+∠C=70°+40°=110°;
当AD=AE时,∠AED=∠ADE=40°,
∴∠DAE=100°,
此时,点D与点B重合,不合题意;
当EA=ED时,∠EAD=∠ADE=40°,
∴∠AED=100°,
∴EDC=∠AED-∠C=60°,
∴∠BDA=180°-40°-60°=80°
综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
15、(1)一次函数,反比例,(2).
【解析】
(1)点C在反比例函数图象上,且△OCD的面积为3,并且图象在二、四象限,可求出的值,确定反比例函数的关系式,再确定点C的坐标,用A、C的坐标用待定系数法可确定一次函数的关系式, (2)利用一次函数的关系式可求出于坐标轴的交点坐标,与反比例函数关系式联立可求出F点坐标,利用对称可求出点E坐标,最后由三角形的面积公式求出结果.
【详解】
解:(1)∵点C在反比例函数图象上,且△OCD的面积为3,
∴ , ∴,
∵反比例函数的图象在二、四象限, ∴,
∴反比例函数的解析式为,
把C代入为: 得,, ∴C,
把A(0,4),C(3,-2)代入一次函数得:
,解得:, ∴一次函数的解析式为.
答:一次函数和反比例函数的解析式分别为:,.
(2)一次函数与轴的交点B(2,0).
∵点B关于y轴对称点E, ∴点E(-2,0), ∴BE=2+2=4,
一次函数和反比例函数的解析式联立得:,解得:
, ∴点,
∴.
答:△EFC的面积为1.
考查反比例函数的图象和性质、一次函数的图象和性质以及方程组、三角形的面积等知识,理解反比例函数、一次函数图象上点的坐标的特征,是解决问题的关键.
16、(1);(2);(3)当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社,见解析.
【解析】
(1)根据甲旅行社的优惠方式,可计算出y1与x之间的关系.
(2)根据乙旅行社的优惠方式,可计算出y2与x之间的关系.
(3)根据(1)(2)的表达式,利用不等式的知识可得出人数多少克选择旅行社.
【详解】
(1);
(2)根据乙旅行社的优惠方式;;
(3)①甲社总费用=乙社总费用的情况,此时,解得:;
即当时,两家费用一样.
②甲社总费用多于乙社总费用的情况:,
解不等式得:,
即当时,乙旅行社费用较低.
③甲社总费用少于乙社总费用的情况,此时
解得:
即当时,甲旅行社费用较低.
答:当人数为15人时,两家均可选择,当人数在之间时选择乙旅行社,当人数时,选择甲旅行社.
此题考查了一次函数的应用,解答本题的关键是得出甲乙旅行社收费与人数之间的关系式,利用不等式的知识解答,难度一般.
17、(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.
【解析】
根据两种图书的倍数关系,设乙图书每本的价格为x元,则甲图书每本的价格为2.5x元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.
设购买甲图书m本,则购买乙图书(2m+8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.
【详解】
解:(1)设乙图书每本价格为元,则甲图书每本价格是元,
根据题意可得:,
解得:,
经检验得:是原方程的根,
则,
答:乙图书每本价格为20元,则甲图书每本价格是50元;
(2)设购买甲图书本数为,则购买乙图书的本数为:,
故,
解得:,
故,
答:该图书馆最多可以购买28本乙图书.
本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.
18、(1);(2)见解析,AB、CD、EF三条线段的长能成为一个直角三角形三边的长,理由见解析
【解析】
(1)直接利用勾股定理得出AB的长;
(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.
【详解】
(1)线段AB的长是:=;
故答案为:;
(2)如图所示:EF即为所求,
AB、CD、EF三条线段的长能成为一个直角三角形三边的长
理由:∵AB2=()2=5,DC2=8,EF2=13,
∴AB2+DC2=EF2,
∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.
此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x-1
【解析】
分别对2个多项式因式分解,再取公因式.
【详解】
解:多项式=a(x+1)(x-1)
2x2-4x+2=2(x-1)2
所以两个多项式的公因式是x-1
本题考查公因式相关,熟练掌握并利用求多项式公因式的方法进行分析是解题的关键.
20、2
【解析】
由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.
【详解】
∵正比例函数y=kx的图象经过点(2,2),
∴2=k×2,即k=2.
故答案为2.
本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.
21、.
【解析】
根据二次根式的性质,求出算术平方根即可.
【详解】
解:原式=.
故答案为:.
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.
22、x≠1
【解析】
试题分析:分式有意义,分母不等于零.
解:当分母x﹣1≠0,即x≠1时,分式有意义.
故答案是:x≠1.
考点:分式有意义的条件.
23、
【解析】
如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,
,∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,
在△GCF与△ECF中,
,∴△GCF≌△ECF(SAS),∴GF=EF,
∵CE=3,CB=6,∴BE=,∴AE=3,
设AF=x,则DF=6−x,GF=3+(6−x)=9−x,
∴EF= ,∴(9−x)²=9+x²,∴x=4,即AF=4,
∴GF=5,∴DF=2,
∴CF= = ,
故答案为:.
点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、, 1.
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=×=×=
要使原分式有意义,故a=3,∴当a=3 时,原式=1.
25、 (1)x1=3,x2=6; (2) x1=2+,x2=2-.
【解析】
(1)利用因式分解法即可求解;
(2)利用配方法解方程即可求解.
【详解】
(1)
∴
∴
∴,,
解得:x1=3,x2=6;
(2)
∴
∴,
∴,
解得x1=2+,x2=2-.
此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.
26、(1)小麦获胜;(2)不可能
【解析】
(1)按照加权平均数的算法直接结合表格信息进行计算,然后加以比较即可;
(2)首先设趣味巧解占,数学应用占,根据题意分别算出小米与小麦的总分,再者利用作差法比较二者总分的大小,最后进一步分析即可得出答案.
【详解】
(1)由题意可得:
小米总分为:(分),
小麦总分为:(分),
∵,
∴小麦获胜;
(2)设趣味巧解占,数学应用占,
则小米总分为:(分),
小麦总分为:(分),
∵,
∴
=
=
=,
∵,
∴小米总分大于小麦总分,
∴小麦不可能获胜,
故答案为:不可能.
本题主要考查了平均数的计算以及作差法比较大小,熟练掌握相关方法是解题关键.
题号
一
二
三
四
五
总分
得分
七巧板拼图
趣题巧解
数学应用
小米
小麦
相关试卷
这是一份2024年广西来宾市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市燕山区九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省桐城市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。