2024年哈尔滨市平房区九上数学开学统考模拟试题【含答案】
展开这是一份2024年哈尔滨市平房区九上数学开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是( )
A.DE=DFB.BD=FDC.∠1=∠2D.AB=AC
2、(4分)2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:
设两队队员身高的平均数依次为,,方差依次为S甲2,S乙2,下列关系中完全正确的是( )
A.=,S甲2<S乙2B.=,S甲2>S乙2
C.<,S甲2<S乙2D.>,S甲2>S乙2
3、(4分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )
A.54°B.64°C.74°D.26°
4、(4分)点P(-2,3)到x轴的距离是( )
A.2B.3C. D.5
5、(4分)如图,在中,,分别以、为圆心,以大于的长为半径画弧,两弧相交于、两点,直线交于点,若的周长是12,则的长为( )
A.6B.7C.8D.11
6、(4分)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为( )
A.25B.18 C.9D.9
7、(4分)在函数y=中,自变量x的取值范围是( )
A.x>1B.x<1C.x≠1D.x=1
8、(4分)下列说法,你认为正确的是( )
A.0 的倒数是 0B.3-1=-3C.是有理数D. 3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.
10、(4分)已知的对角线,相交于点,是等边三角形,且,则的长为__________.
11、(4分)一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于__.
12、(4分)计算:=_______.
13、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).
(1)画出△ABC向下平移5个单位后的△A1B1C1;
(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.
15、(8分)计算:()﹣().
16、(8分)如图,已知在△ABC中,AB=AC=13cm,D是AB上一点,且CD=12cm,BD=8cm.
(1)求证:△ADC是直角三角形;
(2)求BC的长
17、(10分)如图1,是的边上的中线.
(1)①用尺规完成作图:延长到点,使,连接;
② 若,求的取值范围;
(2)如图2,当时,求证:.
18、(10分)如图,在平行四边形中,的平分线交于点,的平分线交于点.
(1)若,,求的长.
(2)求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为________.
20、(4分)已知:,,代数式的值为_________.
21、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
22、(4分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______
23、(4分)观察下列各式
==2;==3;==4;==5……请你找出其中规律,并将第n(n≥1)个等式写出来____________。
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是1.
(1)求此一次函数的解析式;
(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.
25、(10分)计算
(1)分解因式:;
(2)解不等式组.
26、(12分)解方程:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:如图,由已知条件判断AD平分∠BAC即可解决问题.
详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.
故选C.
点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.
2、A
【解析】
根据平均数及方差计算公式求出平均数及方差,然后可判断.
【详解】
解:=(177+176+171+176)÷4=176,
=(178+171+177+174)÷4=176,
s甲2= [(177﹣176)2+(176﹣176)2+(171﹣176)2+(176﹣176)2]=0.1,
s乙2= [(178﹣176)2+(171﹣176)2+(177﹣176)2+(174﹣176)2]=2.1.
s甲2<s乙2.
故选:A.
本题考查了算术平均数和方差的计算,熟练掌握计算公式是解答本题的关键.算术平均数的计算公式是:,方差的计算公式为:.
3、B
【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故选B.
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
4、B
【解析】
直接利用点的坐标性质得出答案.
【详解】
点P(-2,1)到x轴的距离是:1.
故选B.
此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.
5、B
【解析】
利用垂直平分线的作法得MN垂直平分AC,则,利用等线段代换得到△CDE的周长,即可解答.
【详解】
由作图方法可知,直线是的垂直平分线,
所以,
的周长,
所以,,所以,选项B正确.
此题考查平行四边形的性质,作图—基本作图,解题关键在于得到△CDE的周长.
6、D
【解析】
根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.
【详解】
解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.
可得:∠ODE=30°,∠BCD=30°,
设OE=a,则OD=2a,DE= a,
∴BD=OB﹣OD=10﹣2a,BC=2BD=20﹣4a,AC=AB﹣BC=4a﹣10,
∴AF=AC=2a﹣1,CF= AF=(2a﹣1),OF=OA﹣AF=11﹣2a,
∴点D(a, a),点C[11﹣2a,(2a﹣1)].
∵点C、D都在双曲线y=上(k>0,x>0),
∴a• a=(11﹣2a)×(2a﹣1),
解得:a=3或a=1.
当a=1时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,
∴a=1舍去.
∴点D(3,3),
∴k=3×3=9.
故选D.
本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.
7、C
【解析】
试题解析:根据题意,有x-1≠0,
解得x≠1;
故选C.
考点:1.函数自变量的取值范围;2.分式有意义的条件.
8、D
【解析】
根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.
【详解】
A.1没有倒数,所以A选项错误;
B.3﹣1,所以B选项错误;
C.π是无理数,所以C选项错误;
D.3,所以D选项正确.
故选D.
本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.
【详解】
解:方程两边同时乘以x﹣1,得:
3﹣ax=3+1(x﹣1),
解得x=,
∵是正整数,且≠1,
∴a+1=4,或a+1=1,且a≠0,
a=1或a=-1(不符合题意,舍去)
∴非负整数a的值为:1,
故答案为:1.
本题考查了解分式方程,注意不要漏掉分母不能为零的情况.
10、.
【解析】
根据等边三角形的性质得出AD=OA=OD,利用平行四边形的性质和矩形的判定解答即可.
【详解】
解:∵△AOD是等边三角形,
∴AD=OA=OD=4,
∵四边形ABCD是平行四边形,
∴OA=AC,OD=BD,
∴AC=BD=8,
∴四边形ABCD是矩形,
在Rt△ABD中,,
故答案为:.
此题考查平行四边形的性质,关键是根据平行四边形的性质解答即可.
11、.
【解析】
一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合图象经过第一、三、四象限,判断k的取值范围,进而求出k的值.
【详解】
解:∵一次函数y=kx﹣2与两坐标轴的交点分别为,,
∴与两坐标轴围成的三角形的面积S=,
∴k=,
∵一次函数y=kx﹣2的图象经过第一、三、四象限,
∴k>0,
∴k=,
故答案为:.
本题考查了一次函数图象的特征、一次函数与坐标轴交点坐标的求法、三角形面积公式.利用三角形面积公式列出方程并求解是解题的关键.
12、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
13、1
【解析】
试题解析:连接EF,
∵OD=OC,
∵OE⊥OF
∴∠EOD+∠FOD=90°
∵正方形ABCD
∴∠COF+∠DOF=90°
∴∠EOD=∠FOC
而∠ODE=∠OCF=41°
∴△OFC≌△OED,
∴OE=OF,CF=DE=3cm,则AE=DF=4,
根据勾股定理得到EF==1cm.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)见解析,点A2(-3,1),B2(-4,4).
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用平移的性质再结合轴对称图形的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,点A2(-3,1),B2(-4,4).
此题主要考查了作图--轴对称变换,关键是正确确定组成图形的关键点关于x轴的对称点位置.
15、
【解析】
分析:根据二次根式的运算法则即可求出答案.
详解:原式=
=
点睛:本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
16、(1)见解析;(2)4cm.
【解析】
(1)求出AD的长,再根据勾股定理的逆定理判断即可;
(2)根据勾股定理求出BC即可.
【详解】
(1)证明:∵AB=13ccm,BD=8cm,
∴AD=AB﹣BD=5cm,
∴AC=13cm,CD=12cm,
∴AD2+CD2=AC2,
∴∠ADC=90°,
即△ADC是直角三角形;
(2)在Rt△BDC中,∠BDC=180°﹣90°=90°,BD=8cm,CD=12cm,
由勾股定理得:BC===4(cm),
即BC的长是4cm.
本题考查了勾股定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
17、(1)①详见解析;②1<<5;(2)详见解析
【解析】
(1)①首先利用尺规作图,使得DE=AD,在连接CE,②首先利用≌可得AB=CE,在中,确定AE的范围,再根据AE=2AD,来确定AD的范围.
(2)首先延长延长到点,使,连接和BE,结合,可证四边形是平行四边形,再根据,可得四边形是矩形,因此可证明.
【详解】
(1)①用尺规完成作图:延长到点,使,连接;
②∵,,
∴≌
∴
∴6-4<<6+4,即2<<10
又∵
∴1<<5
(2)延长到点,使,连接
∵
∴四边形是平行四边形
∵
∴四边形是矩形
∴
∴.
本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等.
18、(1);(2)证明见解析.
【解析】
(1)根据等腰三角形的性质即可求解;
(2)根据角平分线的性质及平行线的判定得到,再根据即可证明.
【详解】
(1)解:∵四边形为平形四边形
∴
∵平分
∴
∴
∴,
∴
(2)证明:∵四边形为平行四边形
∴
∵平分
又∴
∴
∴
∴四边形为平行四边形
此题主要考查平行四边形的性质与判定,解题的关键是熟知平行四边形的性质定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 ;
【解析】
树高等于AC+BC,在直角△ABC中,用勾股定理求出BC即可.
【详解】
由勾股定理得,BC=,所以AC+BC=1+.
故答案为().
本题考查了勾股定理的实际应用,解题的关键是在实际问题的图形中得到直角三角形.
20、4
【解析】
根据完全平方公式计算即可求出答案.
【详解】
解:∵,,
∴x−y=2,
∴原式=(x−y)2=4,
故答案为:4
本题考查二次根式的化简求值和完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.
21、(-2,0)或(4,0)或(2,2)
【解析】
分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.
【详解】
解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);
②BC为对角线时,点D的坐标为(4,0);
③AC为对角线时,点D的坐标为(2,2).
综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).
故答案为(-2,0)或(4,0)或(2,2).
本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.
22、1
【解析】
根据题意找出图形的变化规律,根据规律计算即可.
【详解】
解:图1挖去中间的1个小三角形,
图2挖去中间的(1+3)个小三角形,
图3挖去中间的(1+3+32)个小三角形,
…
则图5挖去中间的(1+3+32+33+34)个小三角形,即图5挖去中间的1个小三角形,
故答案为1.
本题考查的是图形的变化,掌握图形的变化规律是解题的关键.
23、
【解析】
根据给定例子,找规律,即可得到答案.
【详解】
由==2;==3;==4;==5,得=,故本题答案是:.
本题主要考查利用算术平方根找规律,学生们需要认真分析例子,探索规律即可.
二、解答题(本大题共3个小题,共30分)
24、(1)一次函数的解析式为;(2)n的最大值是9.
【解析】
试题分析:(1)把x=2,y=-1代入函数y=kx+b,得出方程组,求出方程组的解即可;(2)把P点的坐标代入函数y=-2x+3,求出m的值,根据已知得出不等式组,求出不等式组的解集即可.
试题解析:(1)依题意得:
解得,
∴ 一次函数的解析式为.
(2)由(1)可得,.
∵点P (m , n ) 是此函数图象上的一点,
∴ 即 ,
又∵ ,
∴
解得,.
∴n的最大值是9.
25、(1)y(x−y)1;(1)−3≤x<1.
【解析】
(1)直接提取公因式y,再利用公式法分解因式得出答案;
(1)分别解不等式进而得出不等式组的解集.
【详解】
解:(1)x1y−1xy1+y3
=y(x1−1xy+y1)
=y(x−y)1;
(1),
解①得:x<1,
解②得:x≥−3,
故不等式组的解集为:−3≤x<1.
此题主要考查了提取公因式法以及公式法分解因式、不等式组的解法,正确掌握解题方法是解题关键.
26、(1);(2),
【解析】
(1)直接用因式分解法解方程即可;
(2)利用公式法解方程.
【详解】
解:(1)原方程分解因式得:
∴方程的解为:;
,
本题考查的知识点是解一元二次方程,掌握解一元二次方程的不同方法的步骤是解此题的关键.
题号
一
二
三
四
五
总分
得分
队员1
队员2
队员3
队员4
甲组
176
177
175
176
乙组
178
175
177
174
相关试卷
这是一份2024年海南省琼海市九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨市平房区数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。