2024年河北滦平县数学九年级第一学期开学经典试题【含答案】
展开
这是一份2024年河北滦平县数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
A.140米B.150米C.160米D.240米
2、(4分)当时,计算( )
A.B.C.D.
3、(4分)计算:=( )(a>0,b>0)
A.B.C.2aD.2a
4、(4分)下列各组数中,以它们为边长的线段能构成直角三角形的是( )
A.2,4,5B.6,8,11C.5,12,12D.1,1,
5、(4分)直线y=kx+k﹣2经过点(m,n+1)和(m+1,2n+3),且﹣2<k<0,则n的取值范围是( )
A.﹣2<n<0B.﹣4<n<﹣2C.﹣4<n<0D.0<n<﹣2
6、(4分)小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为( )
A.8,1B.1,9C.8,9D.9,1
7、(4分)下列四个多项式中,能因式分解的是( )
A.a2+1B.a2-6a+9C.x2+5yD.x2-5y
8、(4分)将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是( )
A.-3a2b2 B.-3ab C.-3a2b D.-3a3b3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 .
10、(4分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
11、(4分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.
12、(4分)如图,点是矩形的对角线的中点,交于点,若,,则的长为______.
13、(4分)使有意义的的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在直角坐标系中,直线与轴分别交于点、点,直线交于点,是直线上一动点,且在点的上方,设点.
(1)当四边形的面积为38时,求点的坐标,此时在轴上有一点,在轴上找一点,使得最大,求出的最大值以及此时点坐标;
(2)在第(1)问条件下,直线左右平移,平移的距离为. 平移后直线上点,点的对应点分别为点、点,当为等腰三角形时,直接写出的值.
15、(8分)已知:关于x的一元二次方程ax2﹣2(a﹣1)x+a﹣2=0(a>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2•x1,求这个函数的表达式;
(3)将(2)中所得的函数的图象在直线a=2的左侧部分沿直线a=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a的函数y=2a+b的图象与此图象有两个公共点时,b的取值范围是 .
16、(8分)已知,如图,E、F分别为□ABCD的边BC、AD上的点,且∠1=∠2,.求证:AE=CF.
17、(10分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小长方形的边长为1,所求的图形各顶点也在格点上.
(1)在图1中画一个以点,为顶点的菱形(不是正方形),并求菱形周长;
(2)在图2中画一个以点为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长.
18、(10分)如图,中,.
(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)
(2)在(1)的条件下,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;
20、(4分)若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,–3),则直线的函数表达式是__________.
21、(4分) “等边对等角”的逆命题是 .
22、(4分)如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.
23、(4分)如图,在平面直角坐标系中,函数y=2x﹣3和y=kx+b的图象交于点P(m,1),则关于x的不等式2x﹣3>kx+b的解集是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,∠MDN的两边分别与AB,AC相交于M,N两点,且∠MDN+∠BAC=180°.
(1)求证AE=AF;
(2)若AD=6,DF=2,求四边形AMDN的面积.
25、(10分)化简:()÷并解答:
(1)当x=1+时,求原代数式的值;
(2)原代数式的值能等于﹣1吗?为什么?
26、(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.
【详解】
已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.
本题考查多边形内角与外角,熟记公式是关键.
2、C
【解析】
先确定a的取值范围,再逐项化简,然后合并即可.
【详解】
∵,ab3≥0,
∴a≤0.
∴==.
故选C.
本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再合并同类二次根式即可. 同类二次根式的合并方法是把系数相加减,被开方式和根号不变.
3、C
【解析】
根据二次根式的除法法则计算可得.
【详解】
解:原式,
故选C.
本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.
4、D
【解析】
试题分析:因为,所以选项A错误; 因为,所以选项B错误;因为,所以选项C错误;因为,所以选项D正确;故选D.
考点:勾股定理的逆定理.
5、B
【解析】
(方法一)根据一次函数图象上点的坐标特征可求出n=k﹣1,再结合k的取值范围,即可求出n的取值范围;
(方法二)利用一次函数k的几何意义,可得出k=n+1,再结合k的取值范围,即可求出n的取值范围.
【详解】
解:(方法一)∵直线y=kx+k﹣1经过点(m,n+1)和(m+1,1n+3),
∴ ,
∴n=k﹣1.
又∵﹣1<k<0,
∴﹣4<n<﹣1.
(方法二)∵直线y=kx+k﹣1经过点(m,n+1)和(m+1,1n+3),
∴ .
∵﹣1<k<0,即﹣1<n+1<0,
∴﹣4<n<﹣1.
故选B.
本题考查了一次函数图象上点的坐标特征,解题的关键是:(方法一)牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”;(方法二)根据一次函数k的几何意义找出关于n的一元一次不等式.
6、D
【解析】
试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,
最中间的数是9,则中位数是9;
1出现了3次,出现的次数最多,则众数是1;
故选D.
考点:众数;中位数.
7、B
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;
B是完全平方公式的形式,故B能分解因式;
故选B.
8、A
【解析】
在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.
∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.
10、+1.
【解析】
分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.
详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,
∴阴影部分的面积为×9=6,
∴空白部分的面积为9-6=1,
由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,
∴△BCG的面积与四边形DEGF的面积相等,均为×1=,
设BG=a,CG=b,则ab=,
又∵a2+b2=12,
∴a2+2ab+b2=9+6=15,
即(a+b)2=15,
∴a+b=,即BG+CG=,
∴△BCG的周长=+1,
故答案为+1.
点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.
11、22.1
【解析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,
∴这组数据为11,20,21,25,29,
∴平均数=(11+20+21+25+29)÷5=22.1.
故答案是:22.1.
【点睛】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
12、
【解析】
可知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.
【详解】
解:∵四边形ABCD是矩形,
∴∠D=90°,
∵O是矩形ABCD的对角线AC的中点,OM∥AB,
∴OM是△ADC的中位线,
∵OM=2,
∴DC=4,
∵AD=BC=6,
∴AC=
由于△ABC为直角三角形,且O为AC中点
∴BO=
因此OB长为 .
本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.
13、
【解析】
根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.
【详解】
解:依题意得:且x-1≠0,
解得.
故答案为:.
本题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
三、解答题(本大题共5个小题,共48分)
14、(1)点D的坐标为(﹣2,10), 点M的坐标为(0,)时,|ME﹣MD|取最大值2;(2) 当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1
【解析】
(1)将x=-2代入直线AB解析式中即可求出点C的坐标,利用分割图形求面积法结合四边形AOBD的面积为38即可得出关于m的一元一次方程,解之即可得出m值,在x轴负半轴上找出点E关于y轴对称的点E′(-8,0),连接E′D并延长交y轴于点M,连接DM,根据三角形三边关系即可得出此时|ME-MD|最大,最大值为线段DE′的长度,由点D、E′的坐标利用待定系数法即可求出直线DE′的解析式,将x=0代入其中即可得出此时点M的坐标,再根据两点间的距离公式求出线段DE′的长度即可;
(2)根据平移的性质找出平移后点A′、B′的坐标,结合点D的坐标利用两点间的距离公式即可找出B′D、A′B′、A′D的长度,再根据等腰三角形的性质即可得出关于t的方程,解之即可得出t值,此题得解.
【详解】
(1)当x=﹣2时,y=,
∴C(﹣2,),
∴S四边形AOBD=S△ABD+S△AOB=CD•(xA﹣xB)+OA•OB=3m+8=38,
解得:m=10,
∴当四边形AOBD的面积为38时,点D的坐标为(﹣2,10).
在x轴负半轴上找出点E关于y轴对称的点E′(﹣8,0),连接E′D并延长交y轴于点M,连接DM,此时|ME﹣MD|最大,最大值为线段DE′的长度,如图1所示.
DE′=.
设直线DE′的解析式为y=kx+b(k≠0),
将D(﹣2,10)、E′(﹣8,0)代入y=kx+b,
,解得:,
∴直线DE′的解析式为y=x+,
∴点M的坐标为(0,).
故当点M的坐标为(0,)时,|ME﹣MD|取最大值2.
(2)∵A(0,8),B(﹣6,0),
∴点A′的坐标为(t,8),点B′的坐标为(t﹣6,0),
∵点D(﹣2,10),
∴B′D=,
A′B′==10,A′D=.
△A′B′D为等腰三角形分三种情况:
①当B′D=A′D时,有=,
解得:t=1;
②当B′D=A′B′时,有=10,
解得:t=4;
③当A′B′=A′D时,有10=,
解得:t1=﹣2﹣4(舍去),t2=﹣2+4.
综上所述:当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1.
考查了一次函数的综合应用、待定系数法求一次函数解析式、三角形的面积、一次函数图象上点的坐标特征、等腰三角形的性质以及两点间的距离公式,解题的关键是:(1)找出|ME-MD|取最大值时,点M的位置;(2)根据等腰三角形的性质找出关于t的方程.
15、(1)见解析;(2)y=a﹣1(a>0);(1)﹣11<b<﹣2
【解析】
(1)根据一元二次方程的根的判别式判断即可;
(2)先根据一元二次方程的求根公式得出x1,x2,即可得出函数函数关系式;
(1)画出新函数的图形和直线y=2a+b,利用图形和直线与y轴的交点坐标即可得出结论.
【详解】
(1)证明:∵ax2﹣2(a﹣1)x+a﹣2=0(a>0)是关于x的一元二次方程,
∴△=[﹣2(a﹣1)]2﹣4a(a﹣2)=4>0,
∴方程ax2﹣2(a﹣1)x+a﹣2=0(a>0)有两个不相等的实数根.
(2)解:由求根公式,得x=.
∴x=1或x=1﹣.
∵a>0,x1>x2,
∴x1=1,x2=1﹣,
∴y=ax2•x1=a×(1﹣)﹣1=a﹣1.
即函数的表达式y=a﹣1(a>0),
(1)解:如图,直线BD刚好和折线CBA只有一个公共点,再向下平移,就和这些CBA有两个公共点,
继续向下平移到直线CE的位置和直线CBA刚好有1个公共点,再向下平移和这些CBA也只有一个公共点,
由(2)知,函数的表达式y=a﹣1(a>0),
当a=2时,y=2﹣1=﹣1,
∴B(2,﹣1),
由折叠得,C(4,﹣1),
当函数y=2a+b的图象过点B时,
∴﹣1=2×2+b,
∴b=﹣2,
当函数y=2a+b的图象过点C时,
∴﹣1=2×4+b,
∴b=﹣11,
∴﹣11<b<﹣2.
故答案为:﹣11<b<﹣2.
此题是翻折变换,主要考查了一元二次方程的根的判别式,求根公式,一次函数的性质,函数图象的画法,解本题的关键是求出函数的表达式y=a−1(a>0),画出函数图象是解本题的难点.
16、详见解析
【解析】
通过证明三角形全等求得两线段相等即可.
【详解】
∵四边形ABCD为平行四边形
∴∠B=∠D,AB=CD
在△ABE与△CDF中,∠1=∠2,∠B=∠D,AB=CD
∴△ABE≌△CDF
∴AE=CF
本题主要考查平行四边形性质与全等三角形,解题关键在于找到全等三角形.
17、(1)图见解析;菱形周长为;(2)图见解析;平行四边形的周长为6+2.
【解析】
(1)以AB为一边,根据菱形的四条边相等进行作图即可,求出AB的长,即可得到菱形的周长;
(2)根据点A为所画的平行四边形对角线交点且面积为6进行作图即可,然后再利用勾股定理求平行四边形的周长即可.
【详解】
解:(1)如图所示,菱形ABCD即为所求,
∵AB=,
∴菱形ABCD的周长=;
(2)如图所示,平行四边形BCDE即为所求,
∵BC=3,CD=,
∴平行四边形BCDE的周长=2×(3+)=6+2.
本题主要考查了菱形的性质、平行四边形的性质以及勾股定理,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
18、(1)见解析;(2)见解析.
【解析】
(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;
(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.
【详解】
解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;
(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,
在和中,
,
∴≌(HL),
∴AB=BN,
∵,
∴∠C=45°,
又∵∠PNC=90°
∴∠NPC=∠C=45°,
∴PN=NC,
∴BC=BN+NC=AB+PN=AB+AP.
本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.
解:解关于x不等式得,
∵关于x不等式有实数解,
∴
解得a
相关试卷
这是一份2024年广西河池天峨县九年级数学第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西大附中数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省唐山市玉田县数学九年级第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。