2024年河北省沧州市沧县九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,是正比例函数的是( )
A.B.C.D.
2、(4分)在□中,,则的度数为( )
A.B.C.D.
3、(4分)菱形,矩形,正方形都具有的性质是( )
A.四条边相等,四个角相等 B.对角线相等
C.对角线互相垂直 D.对角线互相平分
4、(4分)对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
A.40B.45C.51D.56
5、(4分)如图,直线交坐标轴于、两点,则不等式的解集为( )
A.B.C.D.
6、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解为( )
A.x>-1B.x<-1C.x<-2D.无法确定
7、(4分)下面图形中是中心对称但不一定是轴对称图形的是 ( )
A.平行四边形 B.长方形 C.菱形 D.正方形
8、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为( )
A.18B.14C.12D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线向上平移4个单位后,所得的直线在平面直角坐标系中,不经过第_________象限.
10、(4分)如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y1= 和y2= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:① ②阴影部分面积是(k1﹣k2)③当∠AOC=90°时,|k1|=|k2|;④若四边形OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是_____.
11、(4分)如图,已知等边的边长为8,是中线上一点,以为一边在下方作等边,连接并延长至点为上一点,且,则的长为_________.
12、(4分)把化为最简二次根式,结果是_________.
13、(4分)如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.
(1)求制作每个甲盒、乙盒各用多少材料?
(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.
15、(8分)计算:×2-÷;
16、(8分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发(分钟)后,小明离小刚家的距离为(米),与的函数关系如图所示.
(1)小明的速度为 米/分, ,小明家离科技馆的距离为 米;
(2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为(米),请求出与之间的函数关系式,并在图中画出 (米)与 (分钟)之间的函数关系图象;
(3)小刚出发几分钟后两人在途中相遇?
17、(10分)(1)因式分解:
(2)解不等式组:
18、(10分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的方程(m-2)x|m|+2x-1=0是一元二次方程,则m=________.
20、(4分)如图, 是 的中位线, 平分 交于 , ,则 的长为________.
21、(4分)已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移_____个单位长度得到的.
22、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.
23、(4分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
25、(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.
(1)求tan∠ABD的值.
(2)当点F落在AC边上时,求t的值.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.
26、(12分)计算:(2+)(2﹣)+(﹣)÷.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据正比例函数的定义逐一判断即可.
【详解】
A.不符合y=kx(k为常数且k≠0),故本选项错误;
B.是一次函数但不是正比例函数,故本选项错误;
C.是正比例函数,故本选项正确;
D.自变量x的次数是2,不符合y=kx(k为常数且k≠0),故本选项错误;
故选:C.
本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键.
2、B
【解析】
依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A=180°﹣∠B即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠B=∠D,∠A+∠B=180°.
∵∠B+∠D=216°,
∴∠B=108°.
∴∠A=180°﹣108°=72°.
故选:B.
本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等,邻角互补.
3、D
【解析】试题解析:A、不正确,矩形的四边不相等,菱形的四个角不相等;
B、不正确,菱形的对角线不相等;
C、不正确,矩形的对角线不垂直;
D、正确,三者均具有此性质;
故选D.
4、C
【解析】
解:根据定义,得
∴
解得:.
故选C.
5、B
【解析】
求-kx-b<0的解集,即为kx+b>0,就是求函数值大于0时,x的取值范围.
【详解】
∵要求−kx−b<0的解集,即为求kx+b>0的解集,
∴从图象上可以看出等y>0时,x>−3.
故选:B
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.
6、B
【解析】
如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.
【详解】
解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.
故关于x的不等式k1x+b>k2x的解集为:x<-1.
故选B.
7、A
【解析】分析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
详解:A.平行四边形是中心对称但不是轴对称图形,故本选项正确;
B.长方形是中心对称也是轴对称图形,故本选项错误;
C.菱形是中心对称也是轴对称图形,故本选项错误;
D.正方形是中心对称也是轴对称图形,故本选项错误.
故选:A.
点睛:此题考查了轴对称和中心对称图形的概念,掌握定义是解决此题的关键.
8、A
【解析】
根据题意可知,本题考查了等腰三角形三线合一,直角三角形斜边上的中线的性质,根据等腰三角形三线合一找准底边中线与直角三角形斜边上的中线等于斜边的一半,进行分析推断.
【详解】
解: ,平分
垂直平分(等腰三角形三线合一)
,
又在直角三角形中,点是边中点
,
即
的周长24
即的周长
9
18
故应选A
本题解题关键:理解题干的条件,运用有关性质定理,特别注意的是利用等量代换的思维表示的周长.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、四
【解析】
根据一次函数图象的平移规律,可得答案.
【详解】
解:由题意得:平移后的解析式为:,即,
直线经过一、二、三象限,不经过第四象限,
故答案为:四.
本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键,注意求直线平移后的解析式时要注意平移时的值不变.
10、①②④.
【解析】
作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,所以有;由S△AOM=|k1|,S△CON=|k2|,得到S阴影=S△AOM+S△CON=(|k1|+|k2|)=(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.
【详解】
作AE⊥y轴于E,CF⊥y轴于F,如图,
∵四边形OABC是平行四边形,
∴S△AOB=S△COB,
∴AE=CF,
∴OM=ON,
∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,
∴,故①正确;
∵S△AOM=|k1|,S△CON=|k2|,
∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),
而k1>0,k2<0,
∴S阴影部分=(k1-k2),故②正确;
当∠AOC=90°,
∴四边形OABC是矩形,
∴不能确定OA与OC相等,
而OM=ON,
∴不能判断△AOM≌△CNO,
∴不能判断AM=CN,
∴不能确定|k1|=|k2|,故③错误;
若OABC是菱形,则OA=OC,
而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=-k2,
∴两双曲线既关于x轴对称,也关于y轴对称,故④正确,
故答案为:①②④.
本题考查了反比例函数的综合题,涉及了反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质等,熟练掌握各相关知识是解题的关键.
11、1
【解析】
作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出,在Rt△CMG中,由勾股定理求出MG,即可得到的长.
【详解】
解:如图示:作CG⊥MN于G,
∵△ABC和△CEF是等边三角形,
∴AC=BC,CE=CF,∠ACB=∠ECF=10°,
∴∠ACB-∠BCE=∠ECF-∠BCE,
即∠ACE=∠BCF,
在△ACE与△BCF中
∴△ACE≌△BCF(SAS),
又∵AD是三角形△ABC的中线
∴∠CBF=∠CAE=30°,
∴,
在Rt△CMG中,,
∴MN=2MG=1,
故答案为:1.
本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.
12、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
.
故答案为.
本题考查了二次根式的性质与化简,正确开平方是解题的关键.
13、11
【解析】
根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据 即可得到答案.
【详解】
解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),
∴EC=10,EF=EC+CF=10+2=12
故答案为:11.
本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
三、解答题(本大题共5个小题,共48分)
14、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.
【解析】
首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.
【详解】
解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料
由题可得: 解得x=1.5(米)
经检验x=1.5是原方程的解,所以制作甲盒用1.6米
答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料
(2)由题
∴
∵,∴l随n增大而增大,
∴当时,
考点:分式方程的应用,一次函数的性质.
15、4
【解析】
试题分析:先算乘除,再合并同类二次根式。
×2-÷
考点:本题考查的是二次根式的混合运算
点评:解题的关键是熟知二次根式的乘法法则:,二次根式的除法法则:.
16、(1)60;960;1200;(2)=40(0≤≤24);见解析;(3)12分钟.
【解析】
(1)根据图象可求得小明的速度v1,便可得出a的值以及小明家离科技馆的距离;
(2)根据小刚步行时的速度和小刚家离科技馆的距离,可求出解析式并画出图象;
(3)两人离科技馆的距离相等时相遇,列出方程可求出答案.
【详解】
解:(1)根据图象可知小明4分钟走过的路程为240m,
列出解析式:s1=v1x,
代入可得240=4v1,
解得v1=60米/分钟,
即小明速度是60米/分钟,
根据图象可知小明又走了16分钟到达科技馆,
可得a=16v1,
代入v1,可得a=960m,
据题意小明到科技馆共用20分钟,
可得出小明家离科技馆的距离s2=v1x2,
解得:s2=60×20=1200m,
故小明家离科技馆的距离为1200m;
故答案为:60;960;1200
(2)列出解析式:y1=40x,
由(1)可知小刚离科技馆的距离为a=960m,
代入可得960=40x,
解得:x=24分钟,
作出图象如下:
(3)两人离科技馆的距离相等时相遇,
当x≥4时,小明所走路程y与x的函数关系式为y=60x-240,
则60x-240=40x,
解得:x=12,
即小刚出发12分钟后两人相遇.
本题考查了一次函数的应用,有一定难度,解答本题的关键是仔细审题,同学们注意培养自己的读图能力.
17、(1)2ax(x+2)(x−2);(2)−3<x<1.
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式=2ax(x2−4)=2ax(x+2)(x−2);
(2),
由①得:x>−3,
由②得:x<1,
则不等式组的解集为−3<x<1.
此题考查了提公因式法与公式法的综合运用,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
18、36πcm2
【解析】
用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
【详解】
阴影部分面积=πR2-4πr2
=π(R2-4r2)
=π(R-2r)(R+2r)
=π×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
=36π(cm2).
本题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
方程(m-2)x|m|+2x-1=0是一元二次方程,可得且m-2≠0,解得m=-2.
20、1
【解析】
EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.
【详解】
解:∵EF是△ABC的中位线
∴EF∥BC,∠EDB=∠DBC
又∵BD平分∠ABC
∴∠EBD=∠DBC=∠EDB
∴EB=ED=1.
故答案为1.
本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.
21、1
【解析】
依据直线y=kx+b与y=2x+1平行,且经过点(-3,4),即可得到直线解析式为y=2x+10,进而得到该直线可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
又∵直线经过点(-3,4),
∴4=-3×2+b,
解得b=10,
∴该直线解析式为y=2x+10,
∴可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.
故答案为:1.
本题主要考查了一次函数图象与几何变换,解决问题的关键是利用待定系数法求得直线解析式.
22、
【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,
,即DF=3,在直角三角形FHE中,
23、150°
【解析】
首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
【详解】
解:连接PQ,
由题意可知△ABP≌△CBQ
则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
∵△ABC是等边三角形,
∴∠ABC=∠ABP+∠PBC=60°,
∴∠PBQ=∠CBQ+∠PBC=60°,
∴△BPQ为等边三角形,
∴PQ=PB=BQ=4,
又∵PQ=4,PC=5,QC=3,
∴PQ2+QC2=PC2,
∴∠PQC=90°,
∵△BPQ为等边三角形,
∴∠BQP=60°,
∴∠BQC=∠BQP+∠PQC=150°
∴∠APB=∠BQC=150°
本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
25、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.
【解析】
(1)过点D作DH⊥BC于点H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根据三角函数定义即可解题.
(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,当点F落在AC边上时,FG=CG,即可得到方程求出t.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,分三种情况分别求出S与t之间的函数关系式,①当时,F点在三角形内部或边上,②当时,如图:E点在三角形内部,F点在外部,此时重叠部分图形的面积S=S正方形-S△FMN,③当时,重叠部分面积为梯形MPGN面积,
【详解】
解:(1)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1
根据勾股定理得BC=10
过点D作DH⊥BC于点H
∵△ABD≌△HBD,
∴BH=AH=6,DH=AD,
∴CH=4,
∵△ABC∽△HDC,
∴,
∴,
∴DH=AD=3,
∴tan∠ABD==,
(2)由(1)可知BP=2PE,依题意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,
当点F落在AC边上时,FG=CG,
即,
,
(3)①当时,F点在三角形内部或边上,正方形PEFG在△BDC内部,
此时重叠部分图形的面积为正方形面积:,
②当时,如图:E点在三角形内部,F点在外部,
∵GC=10-3t,NG=CG=(10-3t),FN=t-(10-3t),FM= ,
此时重叠部分图形的面积S=S正方形-S△FMN
,
③当时,重叠部分面积为梯形MPGN面积,如图:
∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,
∴,
综上所述:当时,;当时,;当时,.
本题考查三角形综合题,涉及了矩形的性质、勾股定理、相似三角形的性质和判定、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.
26、3-
【解析】
根据平方差公式和多项式除以单项式可以解答本题.
【详解】
解:(2+)(2﹣)+(﹣)÷
=4﹣3+2﹣
=3﹣.
故答案为:3-.
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】: 这是一份2024-2025学年河北省沧州沧县联考九年级数学第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省沧州市沧县2023-2024学年数学九上期末联考模拟试题含答案: 这是一份河北省沧州市沧县2023-2024学年数学九上期末联考模拟试题含答案,共7页。试卷主要包含了若反比例函数的图象上有两点P1等内容,欢迎下载使用。
河北省沧州市沧县2023-2024学年九上数学期末调研模拟试题含答案: 这是一份河北省沧州市沧县2023-2024学年九上数学期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,设,则代数式的值为,下列各式与是同类二次根式的是等内容,欢迎下载使用。