2024年河北省衡水市故城聚龙中学数学九年级第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列成语描述的事件为随机事件的是( )
A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高
2、(4分)下列各式中,正确的是( )
A.B.C.D.
3、(4分)如图,线段经过平移得到线段,其中点,的对应点分别为点,,这四个点都在格点上.若线段上有一个点 ,,则点在上的对应点的坐标为
A.B.C.D.
4、(4分)下列由左到右的变形,属于因式分解的是( )
A.B.
C.D.
5、(4分)下列条件中能构成直角三角形的是( )
A.a=3,b=4,c=6B.a=5,b=6,c=7
C.a=6,b=8,c=9D.a=5,b=12,c=13
6、(4分)下列函数中,一次函数的是( )
A.y=B.y=C.y=x﹣1D.y=2x2+4
7、(4分)如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是( ).
A.90°B.120°C.150°D.160°
8、(4分)在函数y=中,自变量x的取值范围是( )
A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的方程有解,则k的范围是______.
10、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
11、(4分)若分式的值为0,则x的值是_____.
12、(4分)_______
13、(4分)如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知过点B(1,0)的直线与直线:相交于点P(-1,a).且l1与y轴相交于C点,l2与x轴相交于A点.
(1)求直线的解析式;
(2)求四边形的面积;
(3)若点Q是x轴上一动点,连接PQ、CQ,当△QPC周长最小时,求点Q坐标.
15、(8分)求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)
16、(8分)学校准备从甲乙两位选手中选择一位参加汉字听写大赛,学校对两位选手的表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们的各项成绩(百分制)如表:
如果表达能力、阅读理解、综合素质和汉字听写成绩按照2:1:3:4的比确定,请分别计算两名选手的平均成绩,从他们的成绩看,应选派谁?
17、(10分)计算:(1);
(2).
18、(10分)解方程:x2-1= 4x
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.
20、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
21、(4分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.
22、(4分)矩形ABCD中,对角线AC、BD交于点O,于,若,,则____.
23、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
(1)若AB=2,求四边形ABFG的面积;
(2)求证:BF=AE+FG.
25、(10分)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:
(1)本次调查共选取 名居民;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?
26、(12分)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.守株待兔是随机事件,故A符合题意;
B.水中捞月是不可能事件,故B不符合题意;
C.瓮中捉鳖是必然事件,故C不符合题意;
D.水涨船高是必然事件,故D不符合题意;
故选:A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2、B
【解析】
,要注意 的双重非负性:.
【详解】
;;;,故选B.
本题考查平方根的计算,重点是掌握平方根的双重非负性.
3、A
【解析】
根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.
【详解】
由题意可得线段AB向左平移2个单位,向上平移了3个单位,
则P(a−2,b+3)
故选A.
此题主要考查了坐标与图形的变化−−平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.
4、D
【解析】
根据因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫做因式分解,逐一判断即可.
【详解】
A. 是整式的乘法,不是因式分解,故本选项不符合题意;
B. 中,结果不是整式乘积的形式,故本选项不符合题意;
C. 中,等式的左侧不是多项式,故本选项不符合题意;
D. 是因式分解,故本选项符合题意.
故选D.
此题考查的是因式分解的判断,掌握因式分解的定义是解决此题的关键.
5、D
【解析】
由勾股定理的逆定理,判定的是直角三角形.
【详解】
A. 32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
B. 52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C. 62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D. 52+122=132,故符合勾股定理的逆定理,能组成直角三角形,故正确.
故选D.
本题考查勾股定理的逆定理,如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.
6、C
【解析】
根据一次函数的定义逐项判断即可.
【详解】
A、y=是反比例函数,不是一次函数;
B、y=不是函数;
C、y=x﹣1是一次函数;
D、y=2x2+4是二次函数,不是一次函数;
故选:C.
本题考查了一次函数的定义,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数
7、C
【解析】
根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.
【详解】
旋转角是∠BAB′=180°-30°=150°.
故选C.
本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
8、B
【解析】
根据二次根式有意义的条件列出不等式即可.
【详解】
解:根据题意得:x+3≥0
解得:x≥-3
所以B选项是正确的.
本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k≤5
【解析】
根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.
【详解】
解:∵方程有解
①当时是一次方程,方程必有解,
此时
②当时是二元一次函数,此时方程有解
∴△=16-4(k-1)≥0
解得:k≤5.
综上所述k的范围是k≤5.
故答案为:k≤5.
本题考查了一元二次方程根的判别式的应用.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
10、1+2
【解析】
取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.
【详解】
如图1,取DE的中点N,连结ON、NG、OM.
∵∠AOB=90°,
∴OM=AB=2.
同理ON=2.
∵正方形DGFE,N为DE中点,DE=1,
∴.
在点M与G之间总有MG≤MO+ON+NG(如图1),
如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,
∴线段MG取最大值1+2.
故答案为:1+2.
此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.
11、-2
【解析】
根据分子等于零且分母不等于零列式求解即可.
【详解】
解:由分式的值为2,得
x+2=2且x﹣2≠2.
解得x=﹣2,
故答案为:﹣2.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
12、2019
【解析】
直接利用平方差公式即可解答
【详解】
=2019
此题考查平方差公式,解题关键在于掌握运算法则
13、
【解析】
过点A作AE⊥AB交CD′的延长线于E,构造直角三角形,利用勾股定理即可.
【详解】
解:如图(2),过点A作AE⊥AB交CD′的延长线于E,由翻折得AD=AB=4
∵CD′∥AB
∴∠BCE+∠ABC=180°,
∵∠ABC=90°
∴∠BCE=90°
∵AE⊥AB
∴∠BAE=90°
∴ABCE是矩形,AD′=AD=AB=4
∴AE=BC=3,CE=AB=4,∠AEC=90°
∴D′E==
∴CD′=CE﹣D′E=4﹣
∴S四边形ABCD′=(AB+CD′)•BC=(4+4﹣)×3=,
故答案为:.
本题考查了勾股定理,矩形性质,翻折、旋转的性质,梯形面积等,解题关键对翻折、旋转几何变换的性质要熟练掌握和运用.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-x+1;(2);(3)点Q坐标为(-,0)时△QPC周长最小
【解析】
(1)根据点P在直线l2上,求出P的坐标,然后用待定系数法即可得出结论;
(2)根据计算即可;
(3)作点C关于x轴对称点C',直线C’P与x轴的交点即为所求的点Q,求出点Q的坐标即可.
【详解】
(1)∵点P(-1,a)在直线l2:y=2x+4上,∴,即,则P的坐标为(-1,2),设直线的解析式为:,那么,解得:,∴的解析式为:.
(2)∵直线与y轴相交于点C,∴C的坐标为(0,1).
又∵直线与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而,∴.
(3)作点C关于x轴对称点C′,易求直线C′P:y=-3x-1.当y=0时,x=,∴点Q坐标为(,0)时,△QPC周长最小.
本题考查了一次函数的应用.掌握用待定系数法求一次函数的解析式、不规则图形面积的求法是解答本题的关键.
15、证明见解析.
【解析】
已知条件的基础上,根据平行四边形的判定方法,只需证明另一组对边平行或另一组对角相等.
【详解】
已知:如图,四边形ABCD中, AB∥CD, ∠A=∠C.
求证:四边形ABCD是平行四边形.
证明:∵AB∥CD,
∴∠A+∠D=180°,
∠B+∠C=180°,
∵∠A=∠C,
∴∠B=∠D ,
∴四边形ABCD是平行四边形.
16、应派乙去
【解析】
根据选手四项的得分求出加权平均成绩,比较即可得到结果.
【详解】
=85×0.2+78×0.1+85×0.3+73×0.4=79.5
=73×0.2+80×0.1+82×0.3+83×0.4=80.4
从他们的成绩看,应选派乙.
本题考查了加权平均数,熟练掌握加权平均数的求法是解答本题的关键.
17、 (1);(2)-31+12.
【解析】
(1)直接化简二次根式进而合并,再利用二次根式除法运算法则计算得出答案;
(2)直接利用乘法公式化简得出答案.
【详解】
解:(1)原式=
(2)原式=3-4-(12+18-12)
=3-4-30+12
=-31+12.
此题主要考查了二次根式的混合运算,正确化简各数是解题关键.
18、
【解析】
解:,
,
方程有两个不相等的实数根
本题考查一元二次方程,本题难度较低,主要考查学生对一元二次方程知识点的掌握,运用求根公式即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
众数是一组数据中出现次数最多的数据,有时众数可以不止一个.
【详解】
解:在这一组数据中1是出现次数最多的,故众数是1;
故答案为1.
20、1.1
【解析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF =∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
【详解】
连接DF,如图所示:
在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,
∵AD=AC=3,AF⊥CD,
∴∠CAF =∠DAF,BD=AB-AD=2,
在△ADF和△ACF中,
∴△ADF≌△ACF(SAS),
∴∠ADF=∠ACF=90°,CF=DF,
∴∠BDF=90°,
设CF=DF=x,则BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
即x2+22=(4-x)2,
解得:x=1.1;
∴CF=1.1;
故答案为1.1.
本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.
21、
【解析】
解:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=.
故答案为:.
22、1或
【解析】
试题解析:如图(一)所示,
AB是矩形较短边时,
∵矩形ABCD,
∴OA=OD=BD;
∵OE:ED=1:3,
∴可设OE=x,ED=3x,则OD=2x
∵AE⊥BD,AE=,
∴在Rt△OEA中,x2+()2=(2x)2,
∴x=1
∴BD=1.
当AB是矩形较长边时,如图(二)所示,
∵OE:ED=1:3,
∴设OE=x,则ED=3x,
∵OA=OD,
∴OA=1x,
在Rt△AOE中,x2+()2=(1x)2,
∴x=,
∴BD=8x=8×=.
综上,BD的长为1或.
23、65°.
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=(180°-50°)=65°,
∴∠ECB=130°-65°=65°.
故答案为65°.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2)证明见解析.
【解析】
(1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;
(2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE 中分别求得BF、FG、AE,然后即可得到结论.
【详解】
解:(1)∵四边形ABCD是菱形,
∴AB∥CD,BD平分∠ABC,
又∵AE⊥CD,∠ABC=60°,
∴∠BAE=∠DEA=90°,∠ABD=30°,
∴∠DAE=30°,
在Rt△ABF中,tan30°=,即,解得AF=,
∵FG⊥AD,
∴∠AGF=90°,
在Rt△AFG中,FG=AF=,
∴AG==1.
所以四边形ABFG的面积=S△ABF+S△AGF=;
(2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=,
在Rt△AFG中,FG=AF=,
在Rt△ADE中,AE=,
∴AE+FG=,
∴BF=AE+FG.
本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.
25、(1)80人;(2)见解析;(3)1120人.
【解析】
(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;
(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;
(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.
【详解】
(1)本次调查的居民人数=56÷70%=80人;
(2)为“C”的人数为:80﹣56﹣12﹣4=8人,
“C”所对扇形的圆心角的度数为:×360°=36°
补全统计图如图;
(3)该区从不闯红灯的人数=1600×70%=1120人.
26、3
【解析】
试题分析:利用平方差公式展开和二次根式的乘除法则运算;然后合并即可.
试题解析:原式=7-5+3-2
=2+1
=3.
题号
一
二
三
四
五
总分
得分
批阅人
选手
表达能力
阅读理解
综合素质
汉字听写
甲
85
78
85
73
乙
73
80
82
83
2024-2025学年衡水市滏阳中学数学九年级第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年衡水市滏阳中学数学九年级第一学期开学达标检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省魏县第四中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年河北省魏县第四中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河北省故城县九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年河北省故城县九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了方程x2﹣3x=0的根是,下列事件是必然事件的是等内容,欢迎下载使用。