搜索
    上传资料 赚现金
    英语朗读宝

    2024年河北省衡水市九上数学开学复习检测试题【含答案】

    2024年河北省衡水市九上数学开学复习检测试题【含答案】第1页
    2024年河北省衡水市九上数学开学复习检测试题【含答案】第2页
    2024年河北省衡水市九上数学开学复习检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河北省衡水市九上数学开学复习检测试题【含答案】

    展开

    这是一份2024年河北省衡水市九上数学开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知直线经过二,一,四象限,且与两坐标轴交于A,B两点,若,是该直线上不重合的两点.则下列结论:①;②的面积为;③当时,;④.其中正确结论的序号是( )
    A.①②③B.②③C.②④D.②③④
    2、(4分)数据用小数表示为( )
    A.B.C.D.
    3、(4分)在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
    ①AC=5 ②∠A+∠C=180° ③AC⊥BD ④AC=BD
    A.①②④B.①②③C.②③④D.①③④
    4、(4分)如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为( )
    A.7B.6C.5D.4
    5、(4分)下列计算结果,正确的是( )
    A.B.C.D.
    6、(4分)下列结论中,正确的是( )
    A.四边相等的四边形是正方形
    B.对角线相等的菱形是正方形
    C.正方形两条对角线相等,但不互相垂直平分
    D.矩形、菱形、正方形都具有“对角线相等”的性质
    7、(4分)下列关于向量的等式中,不正确的是( )
    A.B.C.D.
    8、(4分)一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为( )
    A.4B.5C.8D.10
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于的方程有实数根,则的值可以是_____(写出一个即可)
    10、(4分)已知不等式组的解集为,则的值是________.
    11、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
    12、(4分)如图,在菱形中,,,以为边作菱形,且;再以为边作菱形,且;.……;按此规律,菱形的面积为______.
    13、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:
    (1)求图中的值,并求出所在直线方程;
    (2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟
    ①求所在直线的函数解析式;
    ②该运动员跑完赛程用时多少分钟?
    15、(8分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.
    (1)求证:CE=CF.
    (2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;
    (3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
    ①若AE=6,DE=10,求AB的长;
    ②若AB=BC=9,BE=3,求DE的长.
    16、(8分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.
    17、(10分)如图,C地到A,B两地分别有笔直的道路,相连,A地与B地之间有一条河流通过,A,B,C三地的距离如图所示.
    (1)如果A地在C地的正东方向,那么B地在C地的什么方向?
    (2)现计划把河水从河道段的点D引到C地,求C,D两点间的最短距离.
    18、(10分)如图,已知线段a,b,∠α(如图).
    (1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.
    (2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)直线y=﹣3x+5与x轴交点的坐标是_____.
    20、(4分)正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.
    21、(4分)使有意义的x的取值范围是______.
    22、(4分)若直线和直线的交点在第三象限,则m的取值范围是________.
    23、(4分)正方形的边长为,则这个正方形的对角线长为_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)化简的结果正确的是( )
    A.1 B. C. D.
    (2)先化简,再求值:,其中.
    25、(10分)如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.
    (1)求证:四边形ABEF是菱形;
    (2)若AB=4,∠ABC=60°,求OC的长.
    26、(12分)已知:中,AB=AC,点 D、E 分别是线段 CB、AC 延长线上的点,满足 ADE  ABC .
    (1)求证: AC  CE  BD  DC ;
    (2)若点 D 在线段 AC 的垂直平分线上,求证:
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据直线经过的象限即可判定①结论错误;求出点A、B坐标,即可求出的面积,可判定②结论正确;直接观察图像,即可判定③结论正确;将两点坐标代入,进行消元,即可判定④结论错误.
    【详解】
    ∵直线经过二,一,四象限,

    ∴,①结论错误;
    点A,B
    ∴OA=,OB=
    ,②结论正确;
    直接观察图像,当时,,③结论正确;
    将,代入直线解析式,得
    ∴,④结论错误;
    故答案为B.
    此题主要考查一次函数的图像和性质,熟练掌握,即可解题.
    2、B
    【解析】
    由题意根据把还原成原数,就是把小数点向左移动4位进行分析即可.
    【详解】
    解:=.
    故选:B.
    本题考查写出用科学记数法表示的原数.将科学记数法a×10-n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.
    3、A
    【解析】
    当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.
    【详解】
    根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,
    ∴∠BAD=∠ABC=∠BCD=∠CDA=90°,AC=BD,
    ∴∠BAD+∠BCD=180° ,AC==5,
    ①正确,②正确,④正确;③不正确;
    故选A.
    本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.
    4、B
    【解析】
    根据平移的性质分别求出a、b的值,计算即可.
    【详解】
    解:点A的横坐标为-1,点C的横坐标为1,
    则线段AB先向右平移2个单位,
    ∵点B的横坐标为1,
    ∴点D的横坐标为3,即b=3,
    同理,a=3,
    ∴a+b=3+3=6,
    故选:B.
    本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.
    5、C
    【解析】
    按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.
    【详解】
    A.与不是同类二次根式,不能合并,故此选项错误;
    B.,故此选项错误;
    C.,正确;
    D.不能化简了,故此选项错误.
    故选:C.
    此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.
    6、B
    【解析】
    A.可判断为菱形,故本选项错误,
    B.对角线相等的菱形是正方形,故本选项正确,
    C.正方形的两条对角线相等,且互相垂直平分,故本选项错误,
    D.菱形的对角线不一定相等,故本选项错误,
    故选B.
    7、B
    【解析】
    根据平面向量的加法法则判定即可.
    【详解】
    A、,正确,本选项不符合题意;
    B、,错误,本选项符合题意;
    C、,正确,本选项不符合题意;
    D、,正确,本选项不符合题意;
    故选B.
    本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    8、C
    【解析】
    首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.
    【详解】
    如图,∵菱形ABCD的周长为20,对角线AC=6,
    ∴AB=5,AC⊥BD,OA=AC=3,
    ∴OB==4,
    ∴BD=2OB=1,
    即菱形的另一条对角线长为1.
    故选:C.
    此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    根据一元二次方程根的情况结合根的判别式得出关于的关系式,然后进一步求解即可.
    【详解】
    ∵关于的方程有实数根,
    ∴,
    ∴,
    ∴要使原方程有实数根,可取的值为4,
    故答案为:4.
    本题主要考查了一元二次方程根的判别式的运用,熟练掌握相关概念是解题关键.
    10、
    【解析】
    根据不等式的解集求出a,b的值,即可求解.
    【详解】
    解得
    ∵解集为
    ∴=1,3+2b=-1,
    解得a=1,b=-2,
    ∴=2×(-3)=-6
    此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
    11、-2
    【解析】
    根据平均数的公式可得关于x的方程,解方程即可得.
    【详解】
    由题意得

    解得:x=-2,
    故答案为:-2.
    本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
    12、或.
    【解析】
    根据题意求出每个菱形的边长以及面积,从中找出规律.
    【详解】
    解:当菱形的边长为a,其中一个内角为120°时,
    其菱形面积为:a2,
    当AB=1,易求得AC=,此时菱形ABCD的面积为:=×1,
    当AC=时,易求得AC1=3,此时菱形面积ACC1D1的面积为:=×()2,
    当AC1=3时,易求得AC2=3,此时菱形面积AC1C2D2的面积为: =×()4,
    ……,
    由此规律可知:菱形AC2018C2019D2019的面积为×()2×2019=.,
    故答案为:或.
    本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.
    13、4700 2250 中位数
    【解析】
    分析:
    根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
    详解:
    (1)这组数据的平均数为:
    (30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
    =4700(元);
    (2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
    ∴这组数据的中位数是:2250;
    (3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
    ∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
    综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
    点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)①;②85分钟
    【解析】
    (1)根据路程=速度×时间,再把A点的值代入即可解决问题.
    (2)①先求出A、B两点坐标即可解决问题.
    ②令s=0,求出x的值即可解决问题.
    【详解】
    解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,
    ∴千米.
    ∴,
    设直线的解析式为:,
    把代入,得

    解得,,
    ∴直线的解析式为:;
    (2)①∵直线解析式为,
    ∴当时,,解得,
    ∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,
    ∴小明从起点到第二次经过C点所用的时间是,分钟,
    ∴直线经过,,
    设直线解析式,
    ∴,,
    解得,,
    ∴直线解析式为.
    ②小明跑完赛程用的时间即为直线与轴交点的横坐标,
    ∴当时,,解得,
    ∴小明跑完赛程用时85分钟.
    此题考查一次函数综合题,解题关键在于列出方程.
    15、(1)证明见解析;(2)成立;(3)①12;②7.1
    【解析】
    (1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;
    (2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;
    (3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,
    ①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;
    ②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.
    【详解】
    解:(1)在正方形ABCD中,
    ∵BC=CD,∠B=∠ADC,
    ∴∠B=∠CDF,
    ∵BE=DF,
    ∴△CBE≌△CDF,
    ∴CE=CF;
    (2)成立,由(1)知,△CBF≌△CDE,
    ∴∠BCE=∠DCF,
    ∴∠BCE+∠ECD=∠DCF+∠ECD,
    ∴∠ECF=∠BCD=90°,
    ∵∠GCE=41°,
    ∴∠GCF=∠GCE=41°,
    ∵CE=CF,∠GCE=∠GCF,GC=GC,
    ∴△ECG≌△FCG,
    ∴GE=GF,
    ∴GE=DF+GD=BE+GD;
    (3)如图2,过点C作CH⊥AD交AD的延长线于H,
    ∵AD∥BC,∠B=90°,
    ∴∠A=90°,
    ∵∠CHA=90°,
    ∴四边形ABCH为矩形,
    ∵AB=BC,
    ∴矩形ABCH为正方形,
    ∴AH=BC=AB,
    ①∵AE=6,DE=10,根据勾股定理得,AD=8,
    ∵∠DCE=41°,
    由(1)(2)知,ED=BE+DH,
    设BE=x,
    ∴10+x=DH,
    ∴DH=10-x,
    ∵AH=AB,
    ∴8+10-x=x+6,
    ∴x=6,
    ∴AB=12;
    ②∵∠DCE=41°,
    由(1)(2)知,ED=BE+DH,
    设DE=a,
    ∴a=3+DH,
    ∴DH=a-3,
    ∵AB=AH=9,
    ∴AD=9-(a-3)=12-a,AE=AB-BE=6,
    根据勾股定理得,DE2=AD2+AE2,
    即:(12-a)2+62=a2,∴a=7.1,
    ∴DE=7.1.
    本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.
    16、AB=5 周长20 面积24
    【解析】根据菱形的对角线互相垂直平分的性质,运用勾股定理即可求得菱形的边长,从而得到
    菱形的周长,再根据菱形的面积等于对角线乘积的一半即可计算出菱形的面积。
    17、 (1) B地在C地的正北方向;(2)4.8km
    【解析】
    (1)首先根据三地距离关系,可判定其为直角三角形,然后即可判定方位;
    (2)首先作,即可得出最短距离为CD,然后根据直角三角形的面积列出关系式,即可得解.
    【详解】
    (1)∵,即,
    ∴是直角三角形
    ∴B地在C地的正北方向
    (2)作,垂足为D,
    ∴线段的长就是C,D两点间的最短距离.
    ∵是直角三角形

    ∴所求的最短距离为
    此题主要考查直角三角形的实际应用,熟练运用,即可解题.
    18、 (1)无数;(2)图形见解析;1.
    【解析】
    (1)内角不固定,有无数个以线段a,b为一组邻边作平行四边形;
    (2)作∠MAN=a,以A为圆心,线段a和线段b为半径画弧分别交射线AN和AM于点D和B,以D为圆心,线段b为半径画弧,以B为圆心,线段a为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD就是所求作的图形.
    【详解】
    解:(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作无数个,
    故答案为:无数;
    (2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD即为所求.
    故答案为:1.
    此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (,)
    【解析】
    试题分析:本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的纵坐标为0是解答此题的关键.∵令y=0,则﹣3x+5=0,解得x=,∴直线y=﹣3x+5与x轴交点的坐标是(,0).
    考点:一次函数图象与x轴的交点
    20、
    【解析】
    先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.
    【详解】
    解:∵直线y=x+1和y轴交于A1,
    ∴A1的坐标(0,1),即OA1=1,
    ∵四边形C1OA1B1是正方形,
    ∴OC1=OA1=1,
    把x=1代入y=x+1得:y=2,
    ∴A2的坐标为(1,2),
    同理,A3的坐标为(3,4),

    ∴An的坐标为(2n-1-1,2n-1),
    ∴的坐标是,
    故答案为:.
    本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.
    21、
    【解析】
    二次根式有意义的条件.
    【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
    22、m

    相关试卷

    2024年河北省石家庄赵县联考九上数学开学达标检测模拟试题【含答案】:

    这是一份2024年河北省石家庄赵县联考九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】:

    这是一份2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省滦县联考九上数学开学质量检测模拟试题【含答案】:

    这是一份2024年河北省滦县联考九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map