2024年河北省唐山市林西中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要使分式有意义,则x的取值应满足( )
A.x≠2B.x=2C.x=1D.x≠1
2、(4分)方程x2﹣9=0的解是( )
A.x=3B.x=9C.x=±3D.x=±9
3、(4分)如图,函数的图象所在坐标系的原点是( )
A.点B.点C.点D.点
4、(4分)如图,折叠长方形的一边,使点落在边的点处,折痕为,且,.则的长为( )
A.3B.C.4D.
5、(4分)将点向左平移4个单位长度得点,则点的坐标是( )
A.B.C.D.
6、(4分)若的两根分别是与5,则多项式可以分解为( )
A.B.
C.D.
7、(4分)下列方程中,有实数根的方程是( )
A.x4+16=0B.x2+2x+3=0C.D.
8、(4分)已知,,则的结果为( )
A.B. C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图象经过第一、二、四象,请你写出一个满足条件的值__________.
10、(4分)甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)
11、(4分)已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.
12、(4分)一次函数y=-x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.
13、(4分)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知分别是△的边上的点,若,,.
(1)请说明:△∽△;
(2)若,求的长.
15、(8分)已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.
16、(8分)如图,中,平分交于点 ,为的中点.
(1)如图①,若为的中点,,,,,求;
(2)如图②,为线段上一点,连接,满足,.求证:.
17、(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.
(1)画出△A1B1C1和△A2B2C2.
(2)直接写出点B1、B2坐标.
(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.
18、(10分) (1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.
20、(4分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .
21、(4分)如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______
22、(4分)要使分式有意义,则应满足的条件是
23、(4分)比较大小:32_____23.
二、解答题(本大题共3个小题,共30分)
24、(8分)解分式方程:
25、(10分)如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点连接ME、MF、EF.
(1) 求证:△MEF是等腰三角形;
(2) 若∠A=,∠ABC=50°,求∠EMF的度数.
26、(12分)手机可以通过“个人热点”功能实现移动网络共享,小明和小亮准备到操场上测试个人热点连接的有效距离,他们从相距的,两地相向而行.图中,分别表示小明、小亮两人离地的距离与步行时间之间的函数关系,其中的关系式为.根据图象回答下列问题:
(1)请写出的关系式___________;
(2)小明和小亮出发后经过了多长时间相遇?
(3)如果手机个人热点连接的有效距离不超过,那么他们出发多长时间才能连接成功?连接持续了多长时间?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分式的性质,要使分式有意义,则分式的分母不等于0.
【详解】
根据题意可得要使分式有意义,则
所以可得
故选A.
本题主要考查分式的性质,关键在于分式的分母不能为0.
2、C
【解析】
试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.
解:移项得;x2=9,
两边直接开平方得:x=±3,
故选C.
考点:解一元二次方程-直接开平方法.
3、A
【解析】
由函数解析式可知函数关于y轴对称,当x>0时,图象在一象限,当x<0时,图象在二象限,即可求解.
【详解】
由已知可知函数y关于y轴对称,∴y轴与直线PM重合.当x>0时,图象在一象限,当x<0时,图象在二象限,即图象在x轴上方,所以点M是原点.
故选A.
本题考查了反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.
4、B
【解析】
先求出BF的长度,进而求出FC的长度;根据勾股定理列出关于线段EF的方程,即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=10,DC=AB=6;∠B=90°,
由折叠的性质得:AF=AD=10cm;DE=EF
设DE=EF=x,EC=6-x
在Rt△ABF中
∴CF=10-8=2;
在Rt△EFC中,EF2=CE2+CF2,
解得:
故选:B
本题考查了翻折变换,矩形的性质,勾股定理,解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;根据有关定理灵活分析、正确判断、准确求解.
5、B
【解析】
将点A的横坐标减4,纵坐标不变,即可得出点A′的坐标.
【详解】
解:将点A(3,3)向左平移4个单位长度得点A′,则点A′的坐标是(3-4,3),即(-1,3),
故选:B.
此题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
6、C
【解析】
先提取公因式2,再根据已知分解即可.
【详解】
∵x2-2px+3q=0的两根分别是-3与5,
∴2x2-4px+6q=2(x2-2px+3p)
=2(x+3)(x-5),
故选:C.
考查了解一元二次方程和分解因式,注意:能够根据方程的解分解因式是解此题的关键.
7、C
【解析】
利用在实数范围内,一个数的偶数次幂不能为负数对A进行判断;利用判别式的意义对B进行判断;利用分子为0且分母不为0对C进行判断;利用非负数的性质对D进行判断.
【详解】
解:A、因为x4=﹣16<0,所以原方程没有实数解,所以A选项错误;
B、因为△=22﹣4×3=﹣8<0,所以原方程没有实数解,所以B选项错误;
C、x2﹣4=0且x﹣2≠0,解得x=﹣2,所以C选项正确;
D、由于x=0且x﹣1=0,所以原方程无解,所以D选项错误.
故选:C.
此题考查判别式的意义,分式有意义的条件,二次根式,解题关键在于掌握运算法则
8、B
【解析】
将代数式因式分解,再代数求值即可.
【详解】
故选B
本题考查知识点涉及因式分解以及代数式求值,熟练掌握因式分解,简化计算是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、答案不唯一
【解析】
一次函数的图象经过第一、二、四象限,说明x的系数小于1,常数项大于1,据此写出一次函数.
【详解】
解:∵一次函数的图象经过第一、二、四象限,
∴函数x的系数小于1,常数项大于1.
又∵常数项是3,
∴这个函数可以是y=-x+3等.
故答案为:-1
本题考查了一次函数的系数与图象的关系,涉及到的知识点为:一次函数图象经过第一、二、四象限,说明x的系数小于1,常数项大于1.
10、甲.
【解析】
先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.
【详解】
甲的平均数,
所以甲的方差,
因为甲的方差比乙的方差小,
所以甲的成绩比较稳定.
故答案为:甲.
本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
11、 (5,2),(-3,6),(1,-2) .
【解析】
D的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.
【详解】
解:根据平移性质可以得到AB对应DC,所以,由B,C的坐标关系可以推出A,D的坐标关系,即D(-1-2,2+4),所以D点的坐标为(-3,6);
同理,当AB与CD对应时,D点的坐标为(5,2);
当AC与BD对应时,D点的坐标为(1,-2)
故答案为:(5,2),(-3,6),(1,-2).
本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.
12、y=-x, 上, 4
【解析】
分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
详解:根据图形平移的规则“上加下减”,即可得出:
将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
故答案为:y=−x;上;4.
点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
13、1
【解析】
通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.
【详解】
如图,根据题意,AD=AC=6,,,
,
,即,
,
,
这个风车的外围周长是,
故答案为1.
本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)12
【解析】
(1)根据∠A,∠C利用三角形内角和定理求得∠B=60°,再根据∠A是公共角即可求证△ADE∽△ABC;
(2)根据△ADE∽△ABC,利用相似三角形对应边成比例,将已知条件代入即可得出答案.
【详解】
(1)在中,
△ADE∽△ABC
(2)△ADE∽△ABC,
15、1
【解析】
对所求的式子先提公因式,然后将a+b=5,ab=6代入即可解答本题.
【详解】
∵a+b=5,ab=6,
∴a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=6×52
=6×25
=1.
本题考查因式分解的应用,解答本题的关键是对所求式子变形,找出与已知式子之间的关系.
16、(1) (2)见解析
【解析】
(1)根据平行四边形的性质得出AB∥CD,AD∥BC,由DF平分∠ADC可得△DCF为等腰三角形,即DC=FC=8,再根据AB⊥CD得出△ACD为直角三角形,由G是HD的中点得出DH=2GC=,利用勾股定理得出HC=4,即AH=5,最后根据为的中点,即可得出MG的值.
(2)过点D作DN∥AC交CG延长线于N,可得, ,由G是DH的中点得,故,即,再由四边形ABCD是平行四边形可得∠DAC=∠ACB=∠AND,根据三角形内角和定理可得∠BMF=∠AND,∠BMF+∠B=∠AND+∠ADC,再由∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM证明得出△MFC△NDC(ASA),即可得出CM=CN=2CG.
【详解】
(1)四边形ABCD是平行四边形
AB∥CD,AD∥BC
又AD∥BC
∠ADF=∠DFC
DF平分∠ADC
∠ADF=∠FDC
∠DFC=∠FDC
△DCF为等腰三角形
CD=FC=8
AB⊥CD且AB∥CD
AC⊥CD
△ACD为直角三角形
又G是HD的中点且GC=
DH=2GC=(斜边中线=斜边的一半)
RT△HCD中
DC=8,HD=
AC=9
AH=5
M是AD的中点
.
(2)
证明:过点D作DN∥AC交CG延长线于N
,
G是DH的中点
,且∠N=∠ACG,∠CGH=∠DGN
又四边形ABCD是平行四边形
∠B=∠ADC,AD∥BC
∠DAC=∠ACB=∠AND
∠MFB=∠BAC,且∠BMF=180°-∠B-∠BFM,∠ACB=180°-∠B-∠BAC
∠BMF=∠ACB
∠BMF=∠ADN
∠BMF+∠B=∠AND+∠ADC
∠MFC=∠NDC,且CF=CD,∠FCM=∠DCM
△MFC△NDC(ASA)
CM=CN=2CG
本题主要考查平行四边形的性质、斜边的性质、勾股定理,解题关键是熟练掌握平行四边形的性质及斜边的性质,利用勾股定理求出AH的值.
17、(1)见解析;(2)B1(2,4)、B2(0,﹣1);(3)P1(b,﹣a),P2(b﹣2,﹣a﹣5).
【解析】
(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.
(2)根据图形得出对应点的坐标即可;
(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.
【详解】
解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:
(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);
(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).
考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.
18、(1)x1=−3,x2=3;(2)x1=,x2=1.
【解析】
(1)先移项得到2x(x+3)−6(x+3)=0,然后利用因式分解法解方程;
(2)先把方程整理为一般式,然后利用因式分解法解方程.
【详解】
解:(1)2x(x+3)−6(x+3)=0,
(x+3)(2x−6)=0,
x+3=0或2x−6=0,
所以x1=−3,x2=3;
(2)
2x2+3x−5=0,
(2x+5)(x−1)=0,
2x+5=0或x−1=0,
所以x1=,x2=1.
本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.
【详解】
根据题意可得: 解得:m=1
故答案为:1
本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.
20、50°.
【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:
【详解】
∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.
∵∠DBC=15°,∴∠ABC=∠A+15°.
∵AB=AC,∴∠C=∠ABC=∠A+15°.
∴∠A+∠A+15°+∠A+15°=180°,
解得∠A=50°.
故答案为50°.
21、4.8.
【解析】
矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.
【详解】
矩形各内角为直角,∴△ABD为直角三角形
在直角△ABD中,AB=6,AD=8
则BD= =10,
∵△ABD的面积S=AB⋅AD=BD⋅AE,
∴AE= =4.8.
故答案为4.8.
此题考查矩形的性质,解题关键在于运用勾股定理进行计算
22、≠1
【解析】
根据题意得:-1≠0,即≠1.
23、>
【解析】
先计算乘方,再根据有理数的大小比较的方法进行比较即可.
【详解】
∵32=9,23=8,9>8,
∴32>23.
故答案为>.
本题考查了有理数大小比较,同号有理数比较大小的方法:
都是正有理数:绝对值大的数大.如果是代数式或者不直观的式子要用以下方法,
(1)作差,差大于0,前者大,差小于0,后者大;
(2)作商,商大于1,前者大,商小于1,后者大.
都是负有理数:绝对值的大的反而小.如果是复杂的式子,则可用作差法或作商法比较.
异号有理数比较大小的方法:就只要判断哪个是正哪个是负就行,
都是字母:就要分情况讨论
二、解答题(本大题共3个小题,共30分)
24、
【解析】
观察可得最简公分母是(x-3)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
解:去分母,得:2(x-2)=3(x-3)
去括号,得:2x-4-3x+9=0
解得:x=5
检验:当x=5时,(x-3)(x-2)=6≠0,
∴x=5是原方程的解.
本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根
25、(1)见解析;(2)∠EMF=40°
【解析】
(1)易得△BCE和△BCF都是直角三角形,根据直角三角形斜边上的中线等于斜边的一半可得ME=MF=BC,即可得证;
(2)首先根据三角形内角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等边对等角可求出∠MFB=50°,∠MEC=60°,从而推出∠BMF和∠CME的度数,即可求∠EMF的度数.
【详解】
(1)∵CF⊥AB于点F,BE⊥AC于点E,
∴△BCE和△BCF为直角三角形
∵M为BC的中点
∴ME=BC,MF=BC
∴ME=MF
即△MEF是等腰三角形
(2)∵∠A=70°,∠ABC=50°,
∴∠ACB=180°-70°-50°=60°
由(1)可知MF=MB,ME=MC,
∴∠MFB=∠ABC=50°,∠MEC=∠ACB=60°,
∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°
∴∠EMF=180°-∠BMF-∠CME=180°-80°-60°=40°
本题考查了等腰三角形的判定与角度计算,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
26、(1);(2)经过后二者相遇;(3)出发时才能连接,持续了
【解析】
(1) 设的解析式为y=kx,把(100,100)代入求解即可;
(2)把函数解析式联立方程组,求得方程组的解即可;
(3) 设当出发时相距,小亮速度为,得出,求解即可得出出发32s才能连接成功;再求出t=48s连接断开,即可求出持续的时间.
【详解】
解:(1)设的解析式为y=kx,
把(100,100)代入得,100=100k,
∴k=1
∴.
故答案为y=x.
(2)由题意得
解得
经过后二者相遇.
(3)解:设当出发时相距,
由题知,小亮速度为.
解得,
∴他们出发32s才能连接成功;
当
解得,即t=48s连接断开,
故连接了
出发时才能连接,持续了.
此题考查一次函数的实际运用,待定系数法求函数解析式,以及结合图象理解题意解决有关的行程问题.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年广安市重点中学数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年南昌市重点中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年南昌市重点中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。