山西省实验中学2024-2025学年九年级上学期第一次月考数学试题
展开
这是一份山西省实验中学2024-2025学年九年级上学期第一次月考数学试题,共9页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
九年级 数学
(本试卷满分100分,考试时间90分钟)
命题人:武杰 校对人:牛婷婷
一、单项选择题(本题共10个小题,每小题3分,共30分)
1.下列属于一元二次方程的是( )
A.B.C.D.
2.下列性质中菱形一定具有的是( )
A.对角线相等B.有一个角是直角C.对角线互相垂直D.四个角相等
3.已知关于的方程的一个根是2,则它的另一个根是( )
A.0B.1C.2D.3
4.某服装店购进一款印有“龖”字图案的上衣,据店长统计,该款上衣1月份销售量为150件,3月份销售量为216件,若该款上衣销售量的月平均增长率为,根据题意可列方程得( )
A.B.C.D.
5.下列方程中没有实数根的是( )
A.B.C.D.
6.如图,在菱形中,对角线与相交于点,,,则的长为( )
A.2B.3C.D.
7.如图,四边形是正方形,,,cm,cm,那么的长为( )
A.6cmB.6.5cmC.5.5cmD.4cm
8.根据下表得知估算一元二次方程的一个根的范围是( )
A.B.C.D.
9.给出一种运算:对于函数,规定,例如,若函数,则有,已知函数,则方程的解是( )
A.,B.C.,D.,
10.如图,在边长为4的正方形中,为边上的一点,且,点为对角线上的动点,则周长的最小值是( )
A.3B.4C.5D.6
二、填空题(本大题共6个小题,每小题3分,共18分)
11.方程化成一般形式是__________________.
12.如图,在矩形中,对角线,相交于点,点,分别是,的中点,若cm,cm,则的周长__________________cm.
13.如图,邻边不等的矩形花圃,它的一边利用已有的16m的围墙,另外三边所围的栅栏的总长度是32m,若矩形花圃的面积为120m2,则的长度是__________________m.
14.已知方程的两根分别为,,则的值为__________________.
15.如图,在中,,,是的中线,是的中点,连接,,若,垂足为,则的长为_________________.
16.如图,正方形的边长为,对角线,相交于点,点在的延长线上,,连接,为的中点,则线段的长为_________________.
三、解答题(本大题共6个小题,共52分)
17.(12分)解方程
(1)(2)
(3)(4)
18.(5分)阅读材料,并回答问题
下面是亮亮用“配方法”解一元二次方程的过程:
解:,
二次项系数化为1,得: 第一步;
移项,得: 第二步;
配方,得:,即 第三步;
由此可得: 第四步;
解得:, 第五步.
(1)“配方法”所依据的公式是______________;(填“完全平方公式”或“平方差公式”)
(2)上面解答过程,从第_________步开始出现错误;
(3)写出正确的解答过程;
19.(6分)如图,已知矩形中,是对角线
(1)实践与操作:利用尺规作线段的垂直平分线,垂足为点,交边于点,交边于点(要求:尺规作图并保留作图痕迹,不写作法,标明字母);
(2)猜想与证明:猜想线段与的数量关系,并加以证明.
20.(6分)已知:如图,在菱形中,对角线,相交于点,,.
(1)求证:四边形是矩形;
(2)若,,则四边形的面积是______________.
21.(12分)请根据以下素材,完成探究任务.
22.(11分)
已知正方形,点是射线上一动点(不与、重合),连接并延长交直线于点,交于点,连接,过点作交于点.
(1)若点在边上,如图1.
①证明:;
②猜想线段与的关系并说明理由;
(2)取中点,连结,若,正方形边长为6,直接写出的长.
山西省实验中学
2024-2025学年第一学期第一次阶段性测评答案(卷)
九年级 数学
一、选择题
1-5:CCABA
6-10:DBDCD
二、填空题
11.12.913.1014.
15.16.
三、解答题
17.
(1),(2),
(3),(4),
18.(1)完全平方公式
(2)三
(3)
解得,
19.(1)
如图所示,即为所求
(2),理由如下:
四边形是矩形
是的垂直平分线
20.(1)证明:,,
四边形是平行四边形,
四边形是菱形,
,
,
平行四边形是矩形;
(2)四边形是菱形,,,
,
,
由(1)得:四边形是矩形,
在中,
由勾股定理得:,
四边形的面积.
21.(1)
解得
答:款钥匙扣的进价为30元/件,款钥匙扣的进价为25元/件。
(2)①15
②12
获得的销售利润最大为1080元.
(3)设款钥匙扣的售价定为元,则每件的销售利润为
元,平均每天可售出件,
依题意得:,
整理得:,
解得:,.
答:将销售价定为每件30元或34元时,才能使款钥匙扣平均每天销售利润为90元.
22.证明:(1)①四边形是正方形,
,,
在和中,
,
,
;
②结论:,理由如下:
,
,
,
,
,
,,
,
,
,,
,
,
;
(2)①如图,当点在线段上时,连接.
,,
,
,
,
,,
,
在中,,
;
②如图,当点在线段的延长线上时,连接.
同法可知是的中位线,
,
在中,,
综上所述,的长为或.…
…
…
0.56
1.25
1.96
…
制定购买方案
购买背景
背景1
巴黎奥运会期间,某网店直接从工厂购进,两款吉祥物“弗里吉”钥匙扣样式,网店第一次用850元购进款钥匙扣20件、款钥匙扣10件,且每件比每件贵5元.
背景2
款钥匙扣售价为45元/件,款钥匙扣售价为37元/件,第一次购进的“弗里吉”钥匙扣售完后,该网店计划再次购进、两款“弗里吉”钥匙扣共80件(进货价和售价均不变),且进货总价不高于2200元.
背景3
巴黎奥运会临近结束时,网店打算把款钥匙扣调价销售,如果按照原价销售,平均每天可销售4件,经过调查发现,销售价每降价1元,平均可多售2件.
信息整理
若款钥匙扣的进价为元/件,款钥匙扣的进价为元/件,列表如下:
类别
款钥匙扣
款钥匙扣
进货量(件)
20
10
进价(元/件)
售价(元/件)
45
37
单件利润(元/件)
①
②
探究任务
任务1
求两款钥匙扣的进价
任务2
请完成填空①和②,根据背景2中的信息,获得的销售利润最大为_______元.
任务3
网店要使款钥匙扣的销售利润平均每天达到90元,每件款钥匙扣的定价应为多少元?
相关试卷
这是一份山西省吕梁市中阳县多校2024-2025学年九年级上学期第一次月考数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省实验中学2024-2025学年九年级上学期第一次月考数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省实验中学2024-2025学年九年级上学期第一次月考数学试题,共6页。