终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年河南省新乡一中学九年级数学第一学期开学质量检测试题【含答案】

    立即下载
    加入资料篮
    2024年河南省新乡一中学九年级数学第一学期开学质量检测试题【含答案】第1页
    2024年河南省新乡一中学九年级数学第一学期开学质量检测试题【含答案】第2页
    2024年河南省新乡一中学九年级数学第一学期开学质量检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河南省新乡一中学九年级数学第一学期开学质量检测试题【含答案】

    展开

    这是一份2024年河南省新乡一中学九年级数学第一学期开学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)计算×的结果是( )
    A.B.4
    C.D.2
    2、(4分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是( )
    A.2B.3C.4D.5
    3、(4分)如图,在平行四边形中,,是对角线上不同的两点,连接,,,.下列条件中,不能得出四边形一定是平行四边形的为( )
    A.B.
    C.D.
    4、(4分)一次函数满足,且随的增大而减小,则此函数的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    5、(4分)若是三角形的三边长,则式子的值( ).
    A.小于0B.等于0C.大于0D.不能确定
    6、(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为( )
    A.24
    B.
    C.
    D.5
    7、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是1环,甲的方差是1.2,乙的方差是1.1.下列说法中不一定正确的是( )
    A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同
    8、(4分)下列调查中,适宜采用抽样调查方式的是( )
    A.调查八年级某班学生的视力情况
    B.调查乘坐飞机的旅客是否携带违禁物品
    C.调查某品牌LED灯的使用寿命
    D.学校在给学生订制校服前尺寸大小的调查
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)
    10、(4分)不等式组的解集是,那么的取值范围是__________.
    11、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
    12、(4分)如图是一块地的平面示意图,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,则这块地的面积为_____m2.
    13、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上,作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标.
    15、(8分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.
    (1)求证:四边形AEFD是平行四边形;
    (2)若∠DAB=120°,AB=12,AD=6,求△ABC的面积.
    16、(8分)如图,直线分别与轴、轴交于点、点,与直线交于点.
    (1)若,请直接写出的取值范围;
    (2)点在直线上,且的面积为3,求点的坐标?
    17、(10分)如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).
    (1)求直线l2的解析式;
    (2)根据图象,求四边形OACD的面积.
    18、(10分).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)当m=_____时,是一次函数.
    20、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).
    21、(4分)如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.
    22、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
    23、(4分)线段、正三角形,平行四边形、菱形中,只是轴对称图形的是_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
    (1)求证:△AEF≌△DEB;
    (2)求证:四边形ADCF是菱形.
    25、(10分)如图,一次函数的图象分别与x轴,y轴交于A、B两点,正比例函数的图象与交于点.
    (1)求m的值及的解析式;
    (2)求得的值为______;
    (3)一次函数的图象为,且,,可以围成三角形,直接写出k的取值范围.
    26、(12分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:
    (1)请计算甲组平均每人投进个数;
    (1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题解析:.
    故选B.
    考点:二次根式的乘除法.
    2、C
    【解析】
    ∵四边形ABCD是矩形,
    ∴AO=BO=DO=CO,AC=BD,
    故①③正确;
    ∵BO=DO,
    ∴S△ABO=S△ADO,故②正确;
    当∠ABD=45°时,∠AOD=90°,
    ∴AC⊥BD,
    ∴矩形ABCD会变成正方形,故⑤正确,
    而④不一定正确,矩形的对角线只是相等且互相平分,
    ∴正确结论的个数是4.
    故选C.
    3、B
    【解析】
    连接AC与BD相交于O,然后利用平行四边形的性质和三角形全等的性质进行判别即可
    【详解】
    如图,连接AC与BD相交于O,在平行四边形ABCD中,OA=OC,OB=OD
    要使四边形AECF为平行四边形,只需证明得到OE=OF即可
    A、若BE=DF,则OB-BE=OD-DF,即OE=OF,故选项不符合题意
    B、若AE=CF,则无法判断OE=OF,故选项符合题意
    C、AF∥CE能利用角角边证明△AOF和△COE全等,从而得到OE=OF,放选项不符合题意
    D、∠BAE=∠DCF能够利用角角边证明△ABE和△CDF全等,从而得到DF=BE,然后根据A选项可得OE=OF,故选项不符合
    题意
    故答案为:B.
    此题考查平行四边形的性质和全等三角形的性质,解题关键在于作辅助线
    4、A
    【解析】
    根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
    故选A.
    考点是一次函数图象与系数的关系.
    5、A
    【解析】
    先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.
    【详解】
    解:=(a-b+c)(a-b-c)
    根据三角形两边之和大于第三边,两边之差小于第三边,
    (a-c+b)(a-c-b)4.当x>m时的解集是x>4,根据同大取大,所以
    故答案为
    11、87.1.
    【解析】
    根据加权平均数的含义和求法,可求出甲的平均成绩.
    【详解】
    面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,
    甲的平均成绩为:(分).
    故答案为:87.1.
    考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
    12、1
    【解析】
    试题解析:连接AC,
    ∵AD=4m,CD=3m,∠ADC=90°,
    ∴AC===5,
    ∵AB=13m,BC=12m,
    ∴AB2=BC2+CD2,即△ABC为直角三角形,
    ∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.
    13、1.
    【解析】
    根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.
    【详解】
    解:将数据从小到大重新排列为:5、6、1、1、10、10,
    所以这组数据的中位数为=1.
    故答案为:1.
    本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
    三、解答题(本大题共5个小题,共48分)
    14、C1的坐标为:(﹣3,﹣2)
    【解析】
    直接利用关于原点对称点的性质得出各对应点位置进而得出答案.
    【详解】
    如图所示:△A1B1C1,即为所求,点C1的坐标为:(﹣3,﹣2).
    此题主要考查了旋转变换,正确得出对应点位置是解题关键.
    15、(1)见解析;(2)S△ABC=18.
    【解析】
    (1)易知AE=AB,DF=CD,即可得到AE=DF,又有AB∥CD,所以四边形AEFD是平行四边形;(2)作CH⊥AB于H.利用平行四边形性质求出∠B,再利用三角函数求出CH,接着利用三角形面积公式求解即可
    【详解】
    (1)证明:如图.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD且AB=CD,
    ∵点E,F分别是AB,CD的中点,
    ∴AE=AB,DF=CD.
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (2)如图,作CH⊥AB于H.
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=6,AD∥BC,
    ∴∠B=180°﹣∠DAB=60°,
    ∴CH=BC•sin60°=3,
    ∴S△ABC=•AB•CH=×12×3=18
    本题主要考查平行四边形的证明与性质,三角函数的简单应用,三角形面积计算等知识点,本题第二问关键在于能够做出辅助线同时利用三角函数求出高
    16、 (1)x>2;(2)(0,3)或(4,1).
    【解析】
    (1)依据直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),即可得到当y1<y2时,x>2;
    (2)分两种情况讨论,依据△OPC的面积为3,即可得到点P的坐标.
    【详解】
    解:(1)∵直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),
    ∴当y1<y2时,x>2;
    (2)将(2,2)代入y1=x+b,得b=3,
    ∴y1=x+3,
    ∴A(6,0),B(0,3),
    设P(x,x+3),
    则当x<2时,由×3×2×3×x=3,
    解得x=0,
    ∴P(0,3);
    当x>2时,由×6×2﹣×6×(x+3)=3,
    解得x=4,
    ∴x+3=1,
    ∴P(4,1),
    综上所述,点P的坐标为(0,3)或(4,1).
    故答案为(1)x>2;(2)(0,3)或(4,1).
    本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,x+3),利用三角形的面积的和差关系列方程是解题的关键.
    17、(1)y=﹣x+4;(2)1.
    【解析】
    (1)设直线l2的解析式为y=kx+b,已知点B、C的坐标,利用待定系数法求直线l2的解析式即可;(2)先求出点D、点A的坐标,从而求得OD、OA的长,再利用四边形OACD的面积=S△ODC+S△AOC即可求得四边形OACD的面积.
    【详解】
    (1)设直线l2的解析式为y=kx+b,
    ∵点C(2,2)、B(3,1)在直线l2上,
    ∴,
    解得, ,
    ∴直线l2的解析式为y=﹣x+4;
    (2)∵点D是直线l1:y=2x﹣2与x轴的交点,
    ∴y=0,0=2x﹣2,x=1,
    ∴D(1,0),
    ∴OD=1,
    ∵点A是直线l2与x轴的交点,
    ∴y=0,
    即0=﹣x+4,
    解得x=4,
    即点A(4,0),
    ∴OA=3,
    连接OC,
    ∴四边形OACD的面积=S△ODC+S△AOC=×4×2+×1×2=1.
    本题考查了待定系数法求函数的解析式及求四边形的面积,正确求得直线l2的解析式是解决问题关键.
    18、
    【解析】
    先分别根据平方差公式和完全平方公式进行计算,再合并即可.
    【详解】
    原式=25-10-2+4-3
    =10+4
    此题考查平方差公式和完全平方公式,掌握运算法则是解题关键
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3或0
    【解析】
    根据一次函数的定义即可求解.
    【详解】
    依题意得m-3≠0,2m+1=1或m-3=0,
    解得m=0或m=3,
    故填:3或0.
    此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.
    20、AF=CE(答案不唯一).
    【解析】
    根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.
    根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.
    添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.
    21、9 .
    【解析】
    作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF= ,即可得出结论.
    【详解】
    解:作DE⊥AB于点E,DF⊥AC于点F,
    ∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
    ∴DE=DF,
    又∵DE⊥AB于点E,DF⊥AC于点F,
    ∴∠AED=∠AFD=90°,
    又∵AD=AD,
    ∴Rt△ADE≌Rt△ADF(HL),
    ∴AE=AF;
    ∵∠MDN+∠BAC=180°,
    ∴∠AMD+∠AND=180°,
    又∵∠DNF+∠AND=180°
    ∴∠EMD=∠FND,
    又∵∠DEM=∠DFN,DE=DF,
    ∴△DEM≌△DFN,
    ∴S△DEM=S△DFN,
    ∴S四边形AMDN=S四边形AEDF,
    ∵,AD平分∠BAC,
    ∴∠DAF=30°,
    ∴Rt△ADF中,DF=3,AF= =3 ,
    ∴S△ADF= AF×DF=×3×3= ,
    ∴S四边形AMDN=S四边形AEDF=2×S△ADF=9 .
    故答案为9 .
    本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.
    22、八
    【解析】
    根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
    【详解】
    解:∵360°÷45°=8,
    ∴这个多边形是八边形.
    故答案为:八.
    此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
    23、正三角形
    【解析】
    沿着一条直线对折,图形两侧完全重合的是轴对称图形,绕着某一点旋转180°后能与原图形重合的是中心对称图形,根据定义逐个判断即可.
    【详解】
    线段既是轴对称图形,又是中心对称图形;
    正三角形是轴对称图形,不是中心对称图形;
    平行四边形不是轴对称图形,是中心对称图形;
    菱形既是轴对称图形,又是中心对称图形;
    只是轴对称图形的是正三角形,
    故答案为:正三角形.
    本题考查轴对称图形与中心对称图形的判断,熟练掌握定义是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)见解析;(2)见解析.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    【详解】
    证明:(1)∵AF∥BC
    ∴∠AFE=∠DBE
    ∵E是AD中点,
    ∴AE=DE
    在△AEF和DEB中
    ∴△AEF≌△DEB(AAS)
    (2)在Rt△ABC中,D是BC的中点,
    所以,AD=BD=CD
    又AF∥DB,且AF=DB,
    所以,AF∥DC,且AF=DC,
    所以,四边形ADCF是菱形.
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.
    25、 (1);;(2);(3)且且.
    【解析】
    (1)由求出点C坐标,待定系数法可得的解析式;
    (2)分别求出的面积即可;
    (3) 或过点C时围不成三角形,由此可知k的取值范围.
    【详解】
    解:(1)∵点在一次函数的图象上
    ∴把代入得,解得
    设的解析式为,将点代入得,解得
    ∴的解析式为
    (2) 时,,所以,即,由可知点C到x轴的距离为,到y轴的距离为.
    (3)由题意可得或过点C时围不成三角形
    当时,,当时,,当过点C时,将点C代入得,解得
    所以当,,可以围成三角形时k的取值范围为且且.
    本题考查了一次函数,包括待定系数法求解析式及函数图像围成三角形的面积,正确理解题意,做到数形结合是解题的关键.
    26、 (1)甲组平均每人投进个数为7个;(1)乙组表现更好.
    【解析】
    (1)加权平均数:若n个数x1,x1,x3,…,xn的权分别是w1,w1,w3,…,wn,则x1w1+x1w1+…+xnwnw1+w1+…+wn叫做这n个数的加权平均数,根据加权平均数的定义计算即可.
    (1)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s1来表示,根据方差的计算公式结合平均数进行计算即可.
    【详解】
    解:(1)甲组平均每人投进个数:(个;
    (1)甲组方差:,
    乙组的方差为3.1,3.1<3.4
    所以从成绩稳定性角度看,乙组表现更好.
    本题考查了方差的计算以及方差越小数据越稳定,正确运用方差公式进行计算是解题的关键.
    题号





    总分
    得分
    投进个数
    10个
    8个
    6个
    4个
    人数
    1个
    5人
    1人
    1人

    相关试卷

    2024年河南省新乡市辉县数学九年级第一学期开学统考试题【含答案】:

    这是一份2024年河南省新乡市辉县数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河南省新乡、开封市名校联考九年级数学第一学期开学调研试题【含答案】:

    这是一份2024年河南省新乡、开封市名校联考九年级数学第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】:

    这是一份2024年河南省淮阳区羲城中学九年级数学第一学期开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map